{"title":"Generalization of the Artin-Hasse logarithm for the Milnor -groups of -rings","authors":"D. N. Tyurin","doi":"10.1070/SM9520","DOIUrl":null,"url":null,"abstract":"Let be a -adically complete ring equipped with a -structure. We construct a functorial group homomorphism from the Milnor -group to the quotient of the -adic completion of the module of differential forms . This homomorphism is a -adic analogue of the Bloch map defined for the relative Milnor -groups of nilpotent extensions of rings of nilpotency degree for which the number is invertible. Bibliography: 12 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a -adically complete ring equipped with a -structure. We construct a functorial group homomorphism from the Milnor -group to the quotient of the -adic completion of the module of differential forms . This homomorphism is a -adic analogue of the Bloch map defined for the relative Milnor -groups of nilpotent extensions of rings of nilpotency degree for which the number is invertible. Bibliography: 12 titles.