{"title":"Geometry of the Wiman–Edge monodromy","authors":"Matthew Stover","doi":"10.1142/s1793525321500503","DOIUrl":null,"url":null,"abstract":"The Wiman–Edge pencil is a pencil of genus 6 curves for which the generic member has automorphism group the alternating group [Formula: see text]. There is a unique smooth member, the Wiman sextic, with automorphism group the symmetric group [Formula: see text]. Farb and Looijenga proved that the monodromy of the Wiman–Edge pencil is commensurable with the Hilbert modular group [Formula: see text]. In this note, we give a complete description of the monodromy by congruence conditions modulo 4 and 5. The congruence condition modulo 4 is new, and this answers a question of Farb–Looijenga. We also show that the smooth resolution of the Baily–Borel compactification of the locally symmetric manifold associated with the monodromy is a projective surface of general type. Lastly, we give new information about the image of the period map for the pencil.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"67 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500503","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
The Wiman–Edge pencil is a pencil of genus 6 curves for which the generic member has automorphism group the alternating group [Formula: see text]. There is a unique smooth member, the Wiman sextic, with automorphism group the symmetric group [Formula: see text]. Farb and Looijenga proved that the monodromy of the Wiman–Edge pencil is commensurable with the Hilbert modular group [Formula: see text]. In this note, we give a complete description of the monodromy by congruence conditions modulo 4 and 5. The congruence condition modulo 4 is new, and this answers a question of Farb–Looijenga. We also show that the smooth resolution of the Baily–Borel compactification of the locally symmetric manifold associated with the monodromy is a projective surface of general type. Lastly, we give new information about the image of the period map for the pencil.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.