Attitude and Altitude Control of Trirotor UAV by Using Adaptive Hybrid Controller

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Z. Ali, Daobo Wang, Suhaib Masroor, M. S. Loya
{"title":"Attitude and Altitude Control of Trirotor UAV by Using Adaptive Hybrid Controller","authors":"Z. Ali, Daobo Wang, Suhaib Masroor, M. S. Loya","doi":"10.1155/2016/6459891","DOIUrl":null,"url":null,"abstract":"The paper presents an adaptive hybrid scheme which is based on fuzzy regulation, pole-placement, and tracking (RST) control algorithm for controlling the attitude and altitude of trirotor UAV. The dynamic and kinematic model of Unmanned Aerial Vehicle (UAV) is unstable and nonlinear in nature with 6 degrees of freedom (DOF); that is why the stabilization of aerial vehicle is a difficult task. To stabilize the nonlinear behavior of our UAV, an adaptive hybrid controller algorithm is used, in which RST controller tuning is performed by adaptive gains of fuzzy logic controller. Simulated results show that fuzzy based RST controller gives better robustness as compared to the classical RST controller.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":"114 ","pages":"1-12"},"PeriodicalIF":1.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6459891","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6459891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 21

Abstract

The paper presents an adaptive hybrid scheme which is based on fuzzy regulation, pole-placement, and tracking (RST) control algorithm for controlling the attitude and altitude of trirotor UAV. The dynamic and kinematic model of Unmanned Aerial Vehicle (UAV) is unstable and nonlinear in nature with 6 degrees of freedom (DOF); that is why the stabilization of aerial vehicle is a difficult task. To stabilize the nonlinear behavior of our UAV, an adaptive hybrid controller algorithm is used, in which RST controller tuning is performed by adaptive gains of fuzzy logic controller. Simulated results show that fuzzy based RST controller gives better robustness as compared to the classical RST controller.
基于自适应混合控制器的三旋翼无人机姿态高度控制
提出了一种基于模糊调节、极点放置和跟踪(RST)控制算法的自适应混合控制方案,用于控制三旋翼无人机的姿态和高度。具有6个自由度的无人机(UAV)动力学和运动学模型具有不稳定性和非线性特性;这就是为什么飞行器的稳定是一项艰巨的任务。为了稳定无人机的非线性行为,采用了一种自适应混合控制器算法,其中RST控制器通过模糊逻辑控制器的自适应增益进行整定。仿真结果表明,与经典RST控制器相比,模糊RST控制器具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Control Science and Engineering
Journal of Control Science and Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
19 weeks
期刊介绍: Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信