{"title":"On Using a Low-Density Flash Lidar for Road Vehicle Tracking","authors":"Vimal Kumar A. R., S. Subramanian, R. Rajamani","doi":"10.1115/1.4050255","DOIUrl":null,"url":null,"abstract":"\n This study uses a low-density solid-state flash lidar for estimating the trajectories of road vehicles in vehicle collision avoidance applications. Low-density flash lidars are inexpensive compared to the commonly used radars and point-cloud lidars, and have attracted the attention of vehicle manufacturers recently. However, tracking road vehicles using the sparse data provided by such sensors is challenging due to the few reflected measurement points obtained. In this paper, such challenges in the use of low-density flash lidars are identified and estimation algorithms to handle the same are presented. A method to use the amplitude information provided by the sensor for better localization of targets is evaluated using both physics-based simulations and experiments. A two-step hierarchical clustering algorithm is then employed to group multiple detections from a single object into one measurement, which is then associated with the corresponding object using a Joint Integrated Probabilistic Data Association (JIPDA) algorithm. A Kalman filter is used to estimate the longitudinal and lateral motion variables and the results are presented, which show that good tracking, especially in the lateral direction, can be achieved using the proposed algorithm despite the sparse measurements provided by the sensor.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"12 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050255","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
This study uses a low-density solid-state flash lidar for estimating the trajectories of road vehicles in vehicle collision avoidance applications. Low-density flash lidars are inexpensive compared to the commonly used radars and point-cloud lidars, and have attracted the attention of vehicle manufacturers recently. However, tracking road vehicles using the sparse data provided by such sensors is challenging due to the few reflected measurement points obtained. In this paper, such challenges in the use of low-density flash lidars are identified and estimation algorithms to handle the same are presented. A method to use the amplitude information provided by the sensor for better localization of targets is evaluated using both physics-based simulations and experiments. A two-step hierarchical clustering algorithm is then employed to group multiple detections from a single object into one measurement, which is then associated with the corresponding object using a Joint Integrated Probabilistic Data Association (JIPDA) algorithm. A Kalman filter is used to estimate the longitudinal and lateral motion variables and the results are presented, which show that good tracking, especially in the lateral direction, can be achieved using the proposed algorithm despite the sparse measurements provided by the sensor.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.