Spectrum and pseudospectrum for quadratic polynomials in Ginibre matrices

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Nicholas A. Cook, A. Guionnet, Jonathan Husson
{"title":"Spectrum and pseudospectrum for quadratic polynomials in Ginibre matrices","authors":"Nicholas A. Cook, A. Guionnet, Jonathan Husson","doi":"10.1214/21-aihp1225","DOIUrl":null,"url":null,"abstract":"For a fixed quadratic polynomial $\\mathfrak{p}$ in $n$ non-commuting variables, and $n$ independent $N\\times N$ complex Ginibre matrices $X_1^N,\\dots, X_n^N$, we establish the convergence of the empirical spectral distribution of $P^N =\\mathfrak{p}(X_1^N,\\dots, X_n^N)$ to the Brown measure of $\\mathfrak{p}$ evaluated at $n$ freely independent circular elements $c_1,\\dots, c_n$ in a non-commutative probability space. The main step of the proof is to obtain quantitative control on the pseudospectrum of $P^N$. Via the well-known linearization trick this hinges on anti-concentration properties for certain matrix-valued random walks, which we find can fail for structural reasons of a different nature from the arithmetic obstructions that were illuminated in works on the Littlewood--Offord problem for discrete scalar random walks.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5

Abstract

For a fixed quadratic polynomial $\mathfrak{p}$ in $n$ non-commuting variables, and $n$ independent $N\times N$ complex Ginibre matrices $X_1^N,\dots, X_n^N$, we establish the convergence of the empirical spectral distribution of $P^N =\mathfrak{p}(X_1^N,\dots, X_n^N)$ to the Brown measure of $\mathfrak{p}$ evaluated at $n$ freely independent circular elements $c_1,\dots, c_n$ in a non-commutative probability space. The main step of the proof is to obtain quantitative control on the pseudospectrum of $P^N$. Via the well-known linearization trick this hinges on anti-concentration properties for certain matrix-valued random walks, which we find can fail for structural reasons of a different nature from the arithmetic obstructions that were illuminated in works on the Littlewood--Offord problem for discrete scalar random walks.
Ginibre矩阵中二次多项式的谱和伪谱
对于$n$不可交换变量中的固定二次多项式$\mathfrak{p}$,以及$n$独立的$n \乘以n$复Ginibre矩阵$X_1^ n,\dots, X_n^ n$,我们建立了$ p ^ n =\mathfrak{p} $ (X_1^ n,\dots, X_n^ n)$的经验谱分布在$n$自由独立的圆元$c_1,\dots, c_n$处的Brown测度在非交换概率空间中的收敛性。证明的主要步骤是获得P^N$伪谱的定量控制。通过众所周知的线性化技巧,这取决于某些矩阵值随机漫步的反集中特性,我们发现,由于与离散标量随机漫步的Littlewood—offford问题中所揭示的算术障碍不同的结构原因,这种特性可能会失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信