Thermal Instability in Nanoliquid Under Four Types of Magnetic-Field Modulation Within Hele-Shaw Cell

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL
S. Rai, B. Bhadauria, Anish Kumar, B. Singh
{"title":"Thermal Instability in Nanoliquid Under Four Types of Magnetic-Field Modulation Within Hele-Shaw Cell","authors":"S. Rai, B. Bhadauria, Anish Kumar, B. Singh","doi":"10.1115/1.4056664","DOIUrl":null,"url":null,"abstract":"\n The influence of trigonometric cosine, square, sawtooth, and triangular wave types of magnetic-field modulation in nanoliquid within Hele-Shaw cell is studied in this paper utilizing linear/nonlinear explorations. The solvability condition to the third-order solution of the referred model equation has been imposed to get the cubic Ginzburg–Landau equation (GBL-equation) which is utilized to measure the rate of heat (or mass) transfer. In the sequel, the influence of the nondimensional parameters is discussed graphically in detail. It is demonstrated that Prandtl number (Pr)/magnetic Prandtl number (Prm)/Lewis-number (Le)/redefined diffusivity-ratio (NA)/concentration Rayleigh-number (RS1) and magnitude of the magnetic-modulation (δ) destabilize the system, that is, the heat/mass transfer increases. On the other hand, nanoliquid magnetic-number (Q), Hele–Shaw number (Hs), and modulating-frequency (ω) stabilize the system. The outcomes demonstrate that the magnetic-field modulation can be imposed significantly to increase or decrease the heat/mass transfer.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"55 17","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056664","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

Abstract

The influence of trigonometric cosine, square, sawtooth, and triangular wave types of magnetic-field modulation in nanoliquid within Hele-Shaw cell is studied in this paper utilizing linear/nonlinear explorations. The solvability condition to the third-order solution of the referred model equation has been imposed to get the cubic Ginzburg–Landau equation (GBL-equation) which is utilized to measure the rate of heat (or mass) transfer. In the sequel, the influence of the nondimensional parameters is discussed graphically in detail. It is demonstrated that Prandtl number (Pr)/magnetic Prandtl number (Prm)/Lewis-number (Le)/redefined diffusivity-ratio (NA)/concentration Rayleigh-number (RS1) and magnitude of the magnetic-modulation (δ) destabilize the system, that is, the heat/mass transfer increases. On the other hand, nanoliquid magnetic-number (Q), Hele–Shaw number (Hs), and modulating-frequency (ω) stabilize the system. The outcomes demonstrate that the magnetic-field modulation can be imposed significantly to increase or decrease the heat/mass transfer.
四种磁场调制下纳米液体的热不稳定性
本文利用线性/非线性方法研究了三角余弦波、方波、锯齿波和三角波对Hele-Shaw细胞内纳米液体磁场调制的影响。对所述模型方程的三阶解施加可解性条件,得到用于测量传热速率的三次金兹堡-朗道方程(gbl -方程)。其次,详细讨论了无量纲参数的影响。结果表明,普朗特数(Pr)/磁普朗特数(Prm)/路易斯数(Le)/重新定义扩散比(NA)/浓度瑞利数(RS1)和磁调制幅度(δ)使体系失稳,即传热传质增加。另一方面,纳米液体的磁数(Q)、Hele-Shaw数(Hs)和调制频率(ω)稳定了系统。结果表明,施加磁场调制可以显著地增加或减少传热传质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信