{"title":"Optimization of luminaire layout to achieve a visually comfortable and energy efficient indoor general lighting scheme by Particle Swarm Optimization","authors":"Purnima Mandal, D. Dey, B. Roy","doi":"10.1080/15502724.2018.1533853","DOIUrl":null,"url":null,"abstract":"ABSTRACT The design of an indoor lighting system for a sustainable building should comply with the recommended maximum limit of lighting power density. The occupants’ visual comfort and visual performance are to be ensured by complying with some mutually conflicting lighting design parameters, such as maintained average illuminance, overall uniformity, and maximum unified glare rating, to the recommended limits. Judicious balance among these multiple conflicting design parameters is a practical design problem. This article aims to address these aspects of indoor lighting design by applying a particle swarm optimization (PSO) algorithm in a developed lighting computation program. The objective function is formulated with maximum or minimum limits for the design parameters recommended by international standards. The effectiveness of the developed program is evaluated by designing an indoor lighting system with commercially available luminaires for an office space that ensures optimized visual comfort, energy efficiency, and initial cost. Optimized results are validated by DiaLux simulation and a maximum deviation of 2.27% is found. Thus, the results show good agreement with DiaLux simulation and significant improvement in the uniformity of illuminance (0.90) compared to the recommended minimum value (0.70) and in discomfort glare (16) compared to the recommended allowable maximum value (19). The developed program establishes the usefulness of the PSO algorithm to optimize the luminaire layout for an indoor general lighting scheme.","PeriodicalId":49911,"journal":{"name":"Leukos","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15502724.2018.1533853","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukos","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15502724.2018.1533853","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT The design of an indoor lighting system for a sustainable building should comply with the recommended maximum limit of lighting power density. The occupants’ visual comfort and visual performance are to be ensured by complying with some mutually conflicting lighting design parameters, such as maintained average illuminance, overall uniformity, and maximum unified glare rating, to the recommended limits. Judicious balance among these multiple conflicting design parameters is a practical design problem. This article aims to address these aspects of indoor lighting design by applying a particle swarm optimization (PSO) algorithm in a developed lighting computation program. The objective function is formulated with maximum or minimum limits for the design parameters recommended by international standards. The effectiveness of the developed program is evaluated by designing an indoor lighting system with commercially available luminaires for an office space that ensures optimized visual comfort, energy efficiency, and initial cost. Optimized results are validated by DiaLux simulation and a maximum deviation of 2.27% is found. Thus, the results show good agreement with DiaLux simulation and significant improvement in the uniformity of illuminance (0.90) compared to the recommended minimum value (0.70) and in discomfort glare (16) compared to the recommended allowable maximum value (19). The developed program establishes the usefulness of the PSO algorithm to optimize the luminaire layout for an indoor general lighting scheme.
期刊介绍:
The Illuminating Engineering Society of North America and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, The Illuminating Engineering Society of North America and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by The Illuminating Engineering Society of North America and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. The Illuminating Engineering Society of North America and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .