Exploring Defects in Nematic Liquid Crystals

Ketan Mehta, Matthew Lee, T. Jankun-Kelly
{"title":"Exploring Defects in Nematic Liquid Crystals","authors":"Ketan Mehta, Matthew Lee, T. Jankun-Kelly","doi":"10.1109/VIS.2005.34","DOIUrl":null,"url":null,"abstract":"Visualization of temporal and spatial tensor data is a challenging task due to the large amount of multi-dimensional data. In most of the visualization, scientists are interested in finding certain defects, anomalies, or correlations while exploring data. Hence, visualization requires efficient exploration and representation techniques. In order to use the nematic liquid crystal (NLC) as a biosensor, scientists need to study and explore simulations for understanding the relationship between topological defects and the biological specimen. To solve the above problem, we merge scientific and information visualization techniques to create a controlled exploration environment. System enables a user to filter and explore NLC data sets for orientation defects. We introduce a three level visualization approach for exploring tensor data sets using timeline, parallel coordinate, and glyph based visualization. Visualization helps in reducing unnecessary data at each stage and focus on the relevant ones. This abstract discusses the goal, approach and various research issues found in the design of the NLC data visualization system.","PeriodicalId":91181,"journal":{"name":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","volume":"94 1","pages":"91"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS.2005.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visualization of temporal and spatial tensor data is a challenging task due to the large amount of multi-dimensional data. In most of the visualization, scientists are interested in finding certain defects, anomalies, or correlations while exploring data. Hence, visualization requires efficient exploration and representation techniques. In order to use the nematic liquid crystal (NLC) as a biosensor, scientists need to study and explore simulations for understanding the relationship between topological defects and the biological specimen. To solve the above problem, we merge scientific and information visualization techniques to create a controlled exploration environment. System enables a user to filter and explore NLC data sets for orientation defects. We introduce a three level visualization approach for exploring tensor data sets using timeline, parallel coordinate, and glyph based visualization. Visualization helps in reducing unnecessary data at each stage and focus on the relevant ones. This abstract discusses the goal, approach and various research issues found in the design of the NLC data visualization system.
向列型液晶缺陷的探索
由于大量的多维数据,时空张量数据的可视化是一项具有挑战性的任务。在大多数可视化中,科学家们感兴趣的是在探索数据时发现某些缺陷、异常或相关性。因此,可视化需要有效的探索和表示技术。为了将向列液晶(NLC)用作生物传感器,科学家们需要研究和探索模拟,以了解拓扑缺陷与生物样品之间的关系。为了解决上述问题,我们将科学和信息可视化技术相结合,创造了一个可控的勘探环境。系统使用户能够过滤和探索NLC数据集的定向缺陷。我们介绍了一种使用时间线、平行坐标和基于符号的可视化来探索张量数据集的三级可视化方法。可视化有助于在每个阶段减少不必要的数据,并专注于相关的数据。摘要论述了NLC数据可视化系统设计的目标、方法和研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信