Bounds for Generalized Distance Spectral Radius and the Entries of the Principal Eigenvector

IF 0.7 Q2 MATHEMATICS
Hilal Ahmad, A. Alhevaz, M. Baghipur, Gui-Xian Tian
{"title":"Bounds for Generalized Distance Spectral Radius and the Entries of the Principal Eigenvector","authors":"Hilal Ahmad, A. Alhevaz, M. Baghipur, Gui-Xian Tian","doi":"10.5556/J.TKJM.52.2021.3280","DOIUrl":null,"url":null,"abstract":"For a simple connected graph $G$, the convex linear combinations $D_{\\alpha}(G)$ of \\ $Tr(G)$ and $D(G)$ is defined as $D_{\\alpha}(G)=\\alpha Tr(G)+(1-\\alpha)D(G)$, $0\\leq \\alpha\\leq 1$. As $D_{0}(G)=D(G)$, $2D_{\\frac{1}{2}}(G)=D^{Q}(G)$, $D_{1}(G)=Tr(G)$ and $D_{\\alpha}(G)-D_{\\beta}(G)=(\\alpha-\\beta)D^{L}(G)$, this matrix reduces to merging the distance spectral and distance signless Laplacian spectral theories. In this paper, we study the spectral properties of the generalized distance matrix $D_{\\alpha}(G)$. We obtain some lower and upper bounds for the generalized distance spectral radius, involving different graph parameters and characterize the extremal graphs. Further, we obtain upper and lower bounds for the maximal and minimal entries of the $ p $-norm normalized Perron vector corresponding to spectral radius $ \\partial(G) $ of the generalized distance matrix $D_{\\alpha}(G)$ and characterize the extremal graphs.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"30 2","pages":"69-89"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.52.2021.3280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

For a simple connected graph $G$, the convex linear combinations $D_{\alpha}(G)$ of \ $Tr(G)$ and $D(G)$ is defined as $D_{\alpha}(G)=\alpha Tr(G)+(1-\alpha)D(G)$, $0\leq \alpha\leq 1$. As $D_{0}(G)=D(G)$, $2D_{\frac{1}{2}}(G)=D^{Q}(G)$, $D_{1}(G)=Tr(G)$ and $D_{\alpha}(G)-D_{\beta}(G)=(\alpha-\beta)D^{L}(G)$, this matrix reduces to merging the distance spectral and distance signless Laplacian spectral theories. In this paper, we study the spectral properties of the generalized distance matrix $D_{\alpha}(G)$. We obtain some lower and upper bounds for the generalized distance spectral radius, involving different graph parameters and characterize the extremal graphs. Further, we obtain upper and lower bounds for the maximal and minimal entries of the $ p $-norm normalized Perron vector corresponding to spectral radius $ \partial(G) $ of the generalized distance matrix $D_{\alpha}(G)$ and characterize the extremal graphs.
广义距离谱半径的界和主特征向量的项
对于简单连通图$G$,定义$Tr(G)$和$D(G)$的凸线性组合$D_{\alpha}(G)$为$D_{\alpha}(G)=\alpha Tr(G)+(1-\alpha)D(G)$, $0\leq \alpha\leq 1$。作为$D_{0}(G)=D(G)$, $2D_{\frac{1}{2}}(G)=D^{Q}(G)$, $D_{1}(G)=Tr(G)$和$D_{\alpha}(G)-D_{\beta}(G)=(\alpha-\beta)D^{L}(G)$,该矩阵简化为合并距离谱和距离无符号拉普拉斯谱理论。本文研究广义距离矩阵$D_{\alpha}(G)$的谱性质。我们得到了涉及不同图参数的广义距离谱半径的下界和上界,并对极值图进行了刻画。进一步,我们得到了广义距离矩阵$D_{\alpha}(G)$的谱半径$ \partial(G) $对应的$ p $ -范数归一化Perron向量的最大值和最小值的上界和下界,并刻画了极值图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信