Convergence of a Piggyback-Style Method for the Differentiation of Solutions of Standard Saddle-Point Problems

IF 1.9 Q1 MATHEMATICS, APPLIED
L. Bogensperger, A. Chambolle, T. Pock
{"title":"Convergence of a Piggyback-Style Method for the Differentiation of Solutions of Standard Saddle-Point Problems","authors":"L. Bogensperger, A. Chambolle, T. Pock","doi":"10.1137/21m1455887","DOIUrl":null,"url":null,"abstract":". We analyse a “piggyback”-style method for computing the derivative of a loss which depends on the solution of a convex-concave saddle point problems, with respect to the bilinear term. We attempt to derive guarantees for the algorithm under minimal regularity assumption on the functions. Our final convergence results include possibly nonsmooth objectives. We illustrate the versatility of the proposed piggyback algorithm by learning optimized shearlet transforms, which are a class of popu-lar sparsifying transforms in the field of imaging.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"19 11","pages":"1003-1030"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1455887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

. We analyse a “piggyback”-style method for computing the derivative of a loss which depends on the solution of a convex-concave saddle point problems, with respect to the bilinear term. We attempt to derive guarantees for the algorithm under minimal regularity assumption on the functions. Our final convergence results include possibly nonsmooth objectives. We illustrate the versatility of the proposed piggyback algorithm by learning optimized shearlet transforms, which are a class of popu-lar sparsifying transforms in the field of imaging.
标准鞍点问题解微分的一种背驮式方法的收敛性
. 我们分析了一种计算损失导数的“背驮式”方法,该方法依赖于凸凹鞍点问题的解,相对于双线性项。我们试图在函数的最小正则性假设下推导算法的保证。我们最终的收敛结果可能包括非光滑目标。我们通过学习优化shearlet变换来说明所提出的背驮式算法的通用性,shearlet变换是成像领域中一类流行的稀疏化变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信