Characteristic Classes of Homogeneous Essential Isolated Determinantal Varieties

IF 0.4 Q4 MATHEMATICS
Xiping Zhang
{"title":"Characteristic Classes of Homogeneous Essential Isolated Determinantal Varieties","authors":"Xiping Zhang","doi":"10.5427/jsing.2022.25w","DOIUrl":null,"url":null,"abstract":"The (homogeneous) Essentially Isolated Determinantal Variety is the natural generalization of generic determinantal variety, and is fundamental example to study non-isolated singularities. In this paper we study the characteristic classes on these varieties. We give explicit formulas of their Chern-Schwartz-MacPherson classes via standard Schubert calculus. As corollaries we obtain formulas for their (generic) sectional Euler characteristics, characteristic cycles and polar classes. In particular, when such variety is a hypersurfaces we compute its Milnor class and the Euler characteristics of the local Milnor fibers. We prove that for such recursive group orbit hypersurfaces the local Euler obstructions completely determine the Milnor classes. \nIn general for reflective group orbits, on the other hand we propose an algorithm to compute their local Euler obstructions via the Chern-Schwartz-MacPherson classes of the orbits, which can be obtained directly from representation theory. This builds a bridge from representation theory of the group action to the singularity theory of the induced orbits.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.25w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The (homogeneous) Essentially Isolated Determinantal Variety is the natural generalization of generic determinantal variety, and is fundamental example to study non-isolated singularities. In this paper we study the characteristic classes on these varieties. We give explicit formulas of their Chern-Schwartz-MacPherson classes via standard Schubert calculus. As corollaries we obtain formulas for their (generic) sectional Euler characteristics, characteristic cycles and polar classes. In particular, when such variety is a hypersurfaces we compute its Milnor class and the Euler characteristics of the local Milnor fibers. We prove that for such recursive group orbit hypersurfaces the local Euler obstructions completely determine the Milnor classes. In general for reflective group orbits, on the other hand we propose an algorithm to compute their local Euler obstructions via the Chern-Schwartz-MacPherson classes of the orbits, which can be obtained directly from representation theory. This builds a bridge from representation theory of the group action to the singularity theory of the induced orbits.
齐次本质分离行列式变种的特征类
(齐次)本质孤立行列式是一般行列式的自然推广,是研究非孤立奇点的基本实例。本文研究了这些品种的特征类。我们用标准舒伯特演算给出了它们的chen - schwartz - macpherson类的显式公式。作为推论,我们得到了它们的(一般)截面欧拉特征、特征环和极类的公式。特别地,当这种变化是一个超曲面时,我们计算它的Milnor类和局部Milnor纤维的欧拉特征。我们证明了对于这种递推群轨道超曲面,局部欧拉障碍完全决定了Milnor类。另一方面,对于一般的反射群轨道,我们提出了一种通过轨道的chen - schwarz - macpherson类来计算其局部欧拉障碍物的算法,该算法可以直接从表示理论中得到。这为从群作用的表示理论到诱导轨道的奇点理论建立了一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信