Application of capacities to space–time fractional dissipative equations I: regularity and the blow-up set

Pub Date : 2022-10-25 DOI:10.4153/s0008414x22000566
Pengtao Li, Zhichun Zhai
{"title":"Application of capacities to space–time fractional dissipative equations I: regularity and the blow-up set","authors":"Pengtao Li, Zhichun Zhai","doi":"10.4153/s0008414x22000566","DOIUrl":null,"url":null,"abstract":"Abstract We apply capacities to explore the space–time fractional dissipative equation: (0.1) \n$$ \\begin{align} \\left\\{\\begin{aligned} &\\partial^{\\beta}_{t}u(t,x)=-\\nu(-\\Delta)^{\\alpha/2}u(t,x)+f(t,x),\\quad (t,x)\\in\\mathbb R^{1+n}_{+},\\\\ &u(0,x)=\\varphi(x),\\ x\\in\\mathbb R^{n}, \\end{aligned}\\right. \\end{align} $$\n where \n$\\alpha>n$\n and \n$\\beta \\in (0,1)$\n . In this paper, we focus on the regularity and the blow-up set of mild solutions to (0.1). First, we establish the Strichartz-type estimates for the homogeneous term \n$R_{\\alpha ,\\beta }(\\varphi )$\n and inhomogeneous term \n$G_{\\alpha ,\\beta }(g)$\n , respectively. Second, we obtain some space–time estimates for \n$G_{\\alpha ,\\beta }(g).$\n Based on these estimates, we prove that the continuity of \n$R_{\\alpha ,\\beta }(\\varphi )(t,x)$\n and the Hölder continuity of \n$G_{\\alpha ,\\beta }(g)(t,x)$\n on \n$\\mathbb {R}^{1+n}_+,$\n which implies a Moser–Trudinger-type estimate for \n$G_{\\alpha ,\\beta }.$\n Then, for a newly introduced \n$L^{q}_{t}L^p_{x}$\n -capacity related to the space–time fractional dissipative operator \n$\\partial ^{\\beta }_{t}+(-\\Delta )^{\\alpha /2},$\n we perform the geometric-measure-theoretic analysis and establish its basic properties. Especially, we estimate the capacity of fractional parabolic balls in \n$\\mathbb {R}^{1+n}_+$\n by using the Strichartz estimates and the Moser–Trudinger-type estimate for \n$G_{\\alpha ,\\beta }.$\n A strong-type estimate of the \n$L^{q}_{t}L^p_{x}$\n -capacity and an embedding of Lorentz spaces are also derived. Based on these results, especially the Strichartz-type estimates and the \n$L^{q}_{t}L^p_{x}$\n -capacity of fractional parabolic balls, we deduce the size, i.e., the Hausdorff dimension, of the blow-up set of solutions to (0.1).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x22000566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We apply capacities to explore the space–time fractional dissipative equation: (0.1) $$ \begin{align} \left\{\begin{aligned} &\partial^{\beta}_{t}u(t,x)=-\nu(-\Delta)^{\alpha/2}u(t,x)+f(t,x),\quad (t,x)\in\mathbb R^{1+n}_{+},\\ &u(0,x)=\varphi(x),\ x\in\mathbb R^{n}, \end{aligned}\right. \end{align} $$ where $\alpha>n$ and $\beta \in (0,1)$ . In this paper, we focus on the regularity and the blow-up set of mild solutions to (0.1). First, we establish the Strichartz-type estimates for the homogeneous term $R_{\alpha ,\beta }(\varphi )$ and inhomogeneous term $G_{\alpha ,\beta }(g)$ , respectively. Second, we obtain some space–time estimates for $G_{\alpha ,\beta }(g).$ Based on these estimates, we prove that the continuity of $R_{\alpha ,\beta }(\varphi )(t,x)$ and the Hölder continuity of $G_{\alpha ,\beta }(g)(t,x)$ on $\mathbb {R}^{1+n}_+,$ which implies a Moser–Trudinger-type estimate for $G_{\alpha ,\beta }.$ Then, for a newly introduced $L^{q}_{t}L^p_{x}$ -capacity related to the space–time fractional dissipative operator $\partial ^{\beta }_{t}+(-\Delta )^{\alpha /2},$ we perform the geometric-measure-theoretic analysis and establish its basic properties. Especially, we estimate the capacity of fractional parabolic balls in $\mathbb {R}^{1+n}_+$ by using the Strichartz estimates and the Moser–Trudinger-type estimate for $G_{\alpha ,\beta }.$ A strong-type estimate of the $L^{q}_{t}L^p_{x}$ -capacity and an embedding of Lorentz spaces are also derived. Based on these results, especially the Strichartz-type estimates and the $L^{q}_{t}L^p_{x}$ -capacity of fractional parabolic balls, we deduce the size, i.e., the Hausdorff dimension, of the blow-up set of solutions to (0.1).
分享
查看原文
容量在时空分数阶耗散方程中的应用I:正则性与爆破集
摘要:我们利用容量来探索时空分数耗散方程:(0.1)$$ \begin{align} \left\{\begin{aligned} &\partial^{\beta}_{t}u(t,x)=-\nu(-\Delta)^{\alpha/2}u(t,x)+f(t,x),\quad (t,x)\in\mathbb R^{1+n}_{+},\\ &u(0,x)=\varphi(x),\ x\in\mathbb R^{n}, \end{aligned}\right. \end{align} $$其中$\alpha>n$和$\beta \in (0,1)$。本文主要讨论了(0.1)的正则性和温和解的爆破集。首先,我们分别建立了齐次项$R_{\alpha ,\beta }(\varphi )$和非齐次项$G_{\alpha ,\beta }(g)$的strichartz型估计。其次,我们得到了$G_{\alpha ,\beta }(g).$的一些时空估计,在这些估计的基础上,我们证明了$R_{\alpha ,\beta }(\varphi )(t,x)$的连续性和$G_{\alpha ,\beta }(g)(t,x)$在$\mathbb {R}^{1+n}_+,$上的Hölder连续性,这意味着$G_{\alpha ,\beta }.$的moser - trudinger型估计。然后,我们对一个新引入的与时空分数阶耗散算子$\partial ^{\beta }_{t}+(-\Delta )^{\alpha /2},$相关的$L^{q}_{t}L^p_{x}$ -容量进行了几何测量理论分析,并建立了它的基本性质。特别地,我们利用$G_{\alpha ,\beta }.$的Strichartz估计和moser - trudinger型估计估计了$\mathbb {R}^{1+n}_+$中分数抛物球的容量,并推导了$L^{q}_{t}L^p_{x}$ -容量的强型估计和Lorentz空间的嵌入。根据这些结果,特别是strichartz型估计和分数抛物线球的$L^{q}_{t}L^p_{x}$ -容量,我们推导出(0.1)的爆破解集的大小,即Hausdorff维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信