FUZZY TOPSIS Application in Materials Analysis for Economic Production of Cashew Juice Extractor

IF 1.3 Q2 MATHEMATICS, APPLIED
I. Emovon, W. O. Aibuedefe
{"title":"FUZZY TOPSIS Application in Materials Analysis for Economic Production of Cashew Juice Extractor","authors":"I. Emovon, W. O. Aibuedefe","doi":"10.1080/16168658.2020.1775332","DOIUrl":null,"url":null,"abstract":"In this paper, a Multi-Criteria Decision-Making (MCDM) tool which combines Fuzzy Set Theory (FST) with TOPSIS (Fuzzy TOPSIS) is presented for selecting optimal material for the different components of the cashew juice extractor. The technique proposed utilise a broad multiple criteria methodology in finding optimal material from among alternative materials. The alternative materials are mild steel, stainless steel, galvanised steel, and alloy steel. To illustrate the applicability of the technique, a case study of the Auger material selection problem was used. The Auger was applied for the demonstration of the proposed method because it is the most critical component of the cashew juice extractor. The result of the analysis indicated that galvanised steel is the optimal material for the Auger. To validate the FUZZY TOPSIS method, the results obtained from it were compared with results obtained from FUZZY MOORA and FUZZY SAW methods. The comparative analysis indicated that FUZZY TOPSIS produces completely same result with the FUZZY SAW method and very similar results with the FUZZY MOORA method. This is an indication of the suitability of the proposed technique in resolving the material selection problem of the cashew juice extractor.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"327 2","pages":"1 - 18"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/16168658.2020.1775332","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2020.1775332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a Multi-Criteria Decision-Making (MCDM) tool which combines Fuzzy Set Theory (FST) with TOPSIS (Fuzzy TOPSIS) is presented for selecting optimal material for the different components of the cashew juice extractor. The technique proposed utilise a broad multiple criteria methodology in finding optimal material from among alternative materials. The alternative materials are mild steel, stainless steel, galvanised steel, and alloy steel. To illustrate the applicability of the technique, a case study of the Auger material selection problem was used. The Auger was applied for the demonstration of the proposed method because it is the most critical component of the cashew juice extractor. The result of the analysis indicated that galvanised steel is the optimal material for the Auger. To validate the FUZZY TOPSIS method, the results obtained from it were compared with results obtained from FUZZY MOORA and FUZZY SAW methods. The comparative analysis indicated that FUZZY TOPSIS produces completely same result with the FUZZY SAW method and very similar results with the FUZZY MOORA method. This is an indication of the suitability of the proposed technique in resolving the material selection problem of the cashew juice extractor.
模糊TOPSIS在腰果榨汁机经济生产物料分析中的应用
本文提出了一种将模糊集理论(FST)与模糊TOPSIS (Fuzzy TOPSIS)相结合的多准则决策(MCDM)工具,用于腰果榨汁机不同部件的物料选择。提出的技术利用广泛的多标准方法从替代材料中寻找最佳材料。替代材料有低碳钢、不锈钢、镀锌钢和合金钢。为了说明该技术的适用性,以螺旋钻材料选择问题为例进行了研究。由于螺旋钻是腰果榨汁机最关键的部件,因此应用该方法进行了演示。分析结果表明,镀锌钢是制造螺旋钻的最佳材料。为了验证FUZZY TOPSIS方法,将其结果与FUZZY MOORA和FUZZY SAW方法的结果进行了比较。对比分析表明,FUZZY TOPSIS法与FUZZY SAW法得到的结果完全相同,与FUZZY MOORA法得到的结果非常相似。这表明所提出的技术在解决腰果榨汁机的材料选择问题上的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
40 weeks
期刊介绍: Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信