Revisiting Character Theory of Finite Groups

IF 0.1 Q4 MATHEMATICS
K. Harada
{"title":"Revisiting Character Theory of Finite Groups","authors":"K. Harada","doi":"10.21915/bimas.2018402","DOIUrl":null,"url":null,"abstract":"Two conjectures proposed (old and somewhat new) by the author elsewhere are discussed in this article. One is concerned with a modular version of the regular character of a finite group G, and the second one is concerned with the ratio of the product of the sizes of all conjugacy classes of G and the product of the degrees of all irreducible characters. 1. Conjectures I and II Let G be a finite group and Irr(G) = {χ1, χ2, . . . , χs} be the set of all inequivalent irreducible characters of G. Furthermore, let Conj(G) = {K1,K2, . . . ,Ks} be the set of all conjugacy classes of G. Choose a representative xj ∈ Kj for each j = 1, . . . , s and choose once and for all, χ1 = 1 and K1 = {1}. The group G acts on the set G by (left) multiplication ρ(g) : G x → gx ∈ G. The corresponding (permutation) character ρG is called the regular character of G and it satisfies ρG = s ∑","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":" 8","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2018402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Two conjectures proposed (old and somewhat new) by the author elsewhere are discussed in this article. One is concerned with a modular version of the regular character of a finite group G, and the second one is concerned with the ratio of the product of the sizes of all conjugacy classes of G and the product of the degrees of all irreducible characters. 1. Conjectures I and II Let G be a finite group and Irr(G) = {χ1, χ2, . . . , χs} be the set of all inequivalent irreducible characters of G. Furthermore, let Conj(G) = {K1,K2, . . . ,Ks} be the set of all conjugacy classes of G. Choose a representative xj ∈ Kj for each j = 1, . . . , s and choose once and for all, χ1 = 1 and K1 = {1}. The group G acts on the set G by (left) multiplication ρ(g) : G x → gx ∈ G. The corresponding (permutation) character ρG is called the regular character of G and it satisfies ρG = s ∑
再论有限群的特征理论
本文讨论了作者在别处提出的两个猜想(旧的和有些新的)。一个是有限群G的正则字符的模形式,另一个是G的所有共轭类的大小积与所有不可约字符的度数积之比。1. 假设G是一个有限群,且Irr(G) = {χ1, χ2,…, χs}为G的所有不等价不可约字符的集合。进一步,令Conj(G) = {K1,K2,…, k}为g的所有共轭类的集合,对于每一个j = 1,选择一个代表xj∈Kj,…, s,一劳永逸地选择χ1 = 1, K1 ={1}。群G通过(左)乘法ρ(G)作用于集合G: G x→gx∈G。对应的(置换)字符ρG称为G的正则字符,它满足ρG = s∑
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信