Comparison of Support Vector Machines and K-Nearest Neighbor Algorithm Analysis of Spam Comments on Youtube Covid Omicron

Sudianto Sudianto, Juan Arton Arton Masheli, Nursatio Nugroho, Rafi Wika Ananda Rumpoko, Zarkasih Akhmad
{"title":"Comparison of Support Vector Machines and K-Nearest Neighbor Algorithm Analysis of Spam Comments on Youtube Covid Omicron","authors":"Sudianto Sudianto, Juan Arton Arton Masheli, Nursatio Nugroho, Rafi Wika Ananda Rumpoko, Zarkasih Akhmad","doi":"10.15408/jti.v15i2.24996","DOIUrl":null,"url":null,"abstract":"Every time a new variant of Coronavirus (Covid-19) appears, themedia or news platforms review it to find out whether the new variantis more dangerous or contagious than before. One of the media orplatforms that is fast in presenting news in videos is YouTube.YouTube is a social media that can upload videos, watch videos, andcomment on the video. The comment field on YouTube videos cannotbe separated from spam comments that annoy other users who want tofollow or participate in the comment column. Indication of spamcomments is still done by observing one by one; this is very inefficientand time-consuming. This study aims to create a model that canclassify spam on YouTube comments. The classification method uses the SVM (Support Vector Machines) algorithm and the KNN (K-Nearest Neighbor) algorithm to identify spam comments or not with comment data taken from Omicron's Covid-19 news video on national news channels. The classification results show that the SVM method is superior inaccuracy with the Linear SVC algorithm of 75.12%, SVC of 76.11%, and Nu-SVC of 77.11%. While the KNN algorithm with k=2 is 65.67%, k=4 is 64.51%, k=6 is 62.35%.","PeriodicalId":52586,"journal":{"name":"Jurnal Sarjana Teknik Informatika","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sarjana Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v15i2.24996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Every time a new variant of Coronavirus (Covid-19) appears, themedia or news platforms review it to find out whether the new variantis more dangerous or contagious than before. One of the media orplatforms that is fast in presenting news in videos is YouTube.YouTube is a social media that can upload videos, watch videos, andcomment on the video. The comment field on YouTube videos cannotbe separated from spam comments that annoy other users who want tofollow or participate in the comment column. Indication of spamcomments is still done by observing one by one; this is very inefficientand time-consuming. This study aims to create a model that canclassify spam on YouTube comments. The classification method uses the SVM (Support Vector Machines) algorithm and the KNN (K-Nearest Neighbor) algorithm to identify spam comments or not with comment data taken from Omicron's Covid-19 news video on national news channels. The classification results show that the SVM method is superior inaccuracy with the Linear SVC algorithm of 75.12%, SVC of 76.11%, and Nu-SVC of 77.11%. While the KNN algorithm with k=2 is 65.67%, k=4 is 64.51%, k=6 is 62.35%.
Youtube上垃圾评论的支持向量机与k -最近邻算法对比分析
每当新冠病毒(Covid-19)出现时,媒体或新闻平台都会对其进行审查,以确定新变种是否比以前更危险或更具传染性。YouTube是快速以视频形式呈现新闻的媒体或平台之一。YouTube是一个可以上传视频、观看视频和评论视频的社交媒体。YouTube视频上的评论字段不能与垃圾评论分开,这些评论会惹恼其他想要关注或参与评论列的用户。垃圾评论的指示仍然是通过逐个观察来完成的;这是非常低效和耗时的。这项研究旨在创建一个模型,可以对YouTube上的垃圾评论进行分类。该分类方法使用支持向量机(SVM)算法和KNN (k -最近邻)算法,以国家新闻频道Omicron新冠肺炎新闻视频的评论数据为基础,识别垃圾评论和非垃圾评论。分类结果表明,SVM方法的准确率优于线性SVC算法的75.12%,SVC算法的76.11%,Nu-SVC算法的77.11%。而k=2的KNN算法为65.67%,k=4为64.51%,k=6为62.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信