Proposal of Local Automatic Weighing Attribute in CBIR

David Jones Ferreira de Lucena, M. C. Oliveira, A. Machado
{"title":"Proposal of Local Automatic Weighing Attribute in CBIR","authors":"David Jones Ferreira de Lucena, M. C. Oliveira, A. Machado","doi":"10.3233/978-1-61499-564-7-1020","DOIUrl":null,"url":null,"abstract":"Lung cancer is the most common malignant lesion and the principal cause of cancer-related death worldwide. This problem encourages researchers to build computer-aided solutions to help diagnose lung cancer. Content-based image retrieval (CBIR) systems are very promising in this context due to a large number of image generated everyday. However, semantic gaps have limited CBIR applicability. This work proposes a new approach to automatically adjust CBIR attribute weights to reflect users' semantic interpretation on retrieval process, minimizing the semantic gap problem and improving retrieval accuracy.","PeriodicalId":79446,"journal":{"name":"Medinfo. MEDINFO","volume":" 7","pages":"1020-1021"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medinfo. MEDINFO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-61499-564-7-1020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is the most common malignant lesion and the principal cause of cancer-related death worldwide. This problem encourages researchers to build computer-aided solutions to help diagnose lung cancer. Content-based image retrieval (CBIR) systems are very promising in this context due to a large number of image generated everyday. However, semantic gaps have limited CBIR applicability. This work proposes a new approach to automatically adjust CBIR attribute weights to reflect users' semantic interpretation on retrieval process, minimizing the semantic gap problem and improving retrieval accuracy.
CBIR中局部自动加权属性的提出
肺癌是世界上最常见的恶性病变,也是癌症相关死亡的主要原因。这个问题促使研究人员建立计算机辅助解决方案来帮助诊断肺癌。基于内容的图像检索(CBIR)系统由于每天都会产生大量的图像,因此在这种情况下非常有前途。然而,语义缺口限制了CBIR的适用性。本文提出了一种自动调整CBIR属性权重以反映用户在检索过程中的语义解释的新方法,从而最小化语义缺口问题,提高检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信