{"title":"Symmetries in Modal Logics","authors":"C. Areces, Guillaume Hoffmann, Ezequiel Orbe","doi":"10.4204/EPTCS.113.6","DOIUrl":null,"url":null,"abstract":"We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":" 26","pages":"373-401"},"PeriodicalIF":0.7000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Symbolic Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4204/EPTCS.113.6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3
Abstract
We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.
期刊介绍:
The Bulletin of Symbolic Logic was established in 1995 by the Association for Symbolic Logic to provide a journal of high standards that would be both accessible and of interest to as wide an audience as possible. It is designed to cover all areas within the purview of the ASL: mathematical logic and its applications, philosophical and non-classical logic and its applications, history and philosophy of logic, and philosophy and methodology of mathematics.