Isolation of Cellulose Degrading Fungi from Decaying Banana Pseudostem and Strelitzia alba

Q2 Biochemistry, Genetics and Molecular Biology
L. M. Legodi, D. L. la Grange, E. van Rensburg, I. Ncube
{"title":"Isolation of Cellulose Degrading Fungi from Decaying Banana Pseudostem and Strelitzia alba","authors":"L. M. Legodi, D. L. la Grange, E. van Rensburg, I. Ncube","doi":"10.1155/2019/1390890","DOIUrl":null,"url":null,"abstract":"Cellulases are a group of hydrolytic enzymes that break down cellulose to glucose units. These enzymes are used in the food, beverage, textile, pulp, and paper and the biofuel industries. The aim of this study was to isolate fungi from natural compost and produce cellulases in submerged fermentation (SmF). Initial selection was based on the ability of the fungi to grow on agar containing Avicel followed by cellulase activity determination in the form of endoglucanase and total cellulase activity. Ten fungal isolates obtained from the screening process showed good endoglucanase activity on carboxymethyl cellulose-Congo Red agar plates. Six of the fungal isolates were selected based on high total cellulase activity and identified as belonging to the genera Trichoderma and Aspergillus. In SmF of synthetic media with an initial pH of 6.5 at 30°C Trichoderma longibrachiatum LMLSAUL 14-1 produced total cellulase activity of 8 FPU/mL and endoglucanase activity of 23 U/mL whilst Trichoderma harzianum LMLBP07 13-5 produced 6 FPU/mL and endoglucanase activity of 16 U/mL. The produced levels of both cellulases and endoglucanase by Trichoderma species were higher than the levels for the Aspergillus fumigatus strains. Aspergillus fumigatus LMLPS 13-4 produced higher β-glucosidase 38 U/mL activity than Trichoderma species.","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/1390890","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/1390890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 31

Abstract

Cellulases are a group of hydrolytic enzymes that break down cellulose to glucose units. These enzymes are used in the food, beverage, textile, pulp, and paper and the biofuel industries. The aim of this study was to isolate fungi from natural compost and produce cellulases in submerged fermentation (SmF). Initial selection was based on the ability of the fungi to grow on agar containing Avicel followed by cellulase activity determination in the form of endoglucanase and total cellulase activity. Ten fungal isolates obtained from the screening process showed good endoglucanase activity on carboxymethyl cellulose-Congo Red agar plates. Six of the fungal isolates were selected based on high total cellulase activity and identified as belonging to the genera Trichoderma and Aspergillus. In SmF of synthetic media with an initial pH of 6.5 at 30°C Trichoderma longibrachiatum LMLSAUL 14-1 produced total cellulase activity of 8 FPU/mL and endoglucanase activity of 23 U/mL whilst Trichoderma harzianum LMLBP07 13-5 produced 6 FPU/mL and endoglucanase activity of 16 U/mL. The produced levels of both cellulases and endoglucanase by Trichoderma species were higher than the levels for the Aspergillus fumigatus strains. Aspergillus fumigatus LMLPS 13-4 produced higher β-glucosidase 38 U/mL activity than Trichoderma species.
香蕉假茎和白条中纤维素降解真菌的分离
纤维素酶是一组水解酶,它将纤维素分解成葡萄糖单位。这些酶用于食品、饮料、纺织、纸浆、造纸和生物燃料工业。本研究的目的是从天然堆肥中分离真菌,并在深层发酵(SmF)中生产纤维素酶。最初的选择是根据真菌在含有Avicel的琼脂上生长的能力,然后以内切葡聚糖酶和总纤维素酶活性的形式测定纤维素酶活性。筛选得到的10株真菌在羧甲基纤维素刚果红琼脂板上表现出良好的内切葡聚糖酶活性。根据高总纤维素酶活性筛选出6株分离真菌,鉴定为木霉属和曲霉属。在30°C初始pH为6.5的SmF合成培养基中,长尾木霉LMLSAUL 14-1产生的总纤维素酶活性为8 FPU/mL,内切葡聚糖酶活性为23 U/mL,哈茨木霉LMLBP07 13-5产生的总纤维素酶活性为6 FPU/mL,内切葡聚糖酶活性为16 U/mL。木霉菌株的纤维素酶和内切葡聚糖酶产量均高于烟曲霉菌株。烟曲霉LMLPS 13-4的β-葡萄糖苷酶活性比木霉高38 U/mL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzyme Research
Enzyme Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信