{"title":"ESTIMATION OF FUTURE DISCRETIONARY BENEFITS IN TRADITIONAL LIFE INSURANCE","authors":"F. Gach, Simon Hochgerner","doi":"10.1017/asb.2022.16","DOIUrl":null,"url":null,"abstract":"Abstract In the context of life insurance with profit participation, the future discretionary benefits (FDB), which are a central item for Solvency II reporting, are generally calculated by computationally expensive Monte Carlo algorithms. We derive analytic formulas to estimate lower and upper bounds for the FDB. This yields an estimation interval for the FDB, and the average of lower and upper bound is a simple estimator. These formulae are designed for real world applications, and we compare the results to publicly available reporting data.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"95 19","pages":"835 - 876"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2022.16","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In the context of life insurance with profit participation, the future discretionary benefits (FDB), which are a central item for Solvency II reporting, are generally calculated by computationally expensive Monte Carlo algorithms. We derive analytic formulas to estimate lower and upper bounds for the FDB. This yields an estimation interval for the FDB, and the average of lower and upper bound is a simple estimator. These formulae are designed for real world applications, and we compare the results to publicly available reporting data.
期刊介绍:
ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.