Application of Square and Oblong Pore Shapes in Rotating Membrane Emulsification to Produce Novel Particulate Products

N. Aryanti, Richard A. Williams, Q. Yuan
{"title":"Application of Square and Oblong Pore Shapes in Rotating Membrane Emulsification to Produce Novel Particulate Products","authors":"N. Aryanti, Richard A. Williams, Q. Yuan","doi":"10.14710/reaktor.20.1.47-56","DOIUrl":null,"url":null,"abstract":"Rotating membrane emulsification (RMR) has been intensively developed and applied for producing emulsion as well as particulate products such as microcapsules. Polyurea microcapsules were generally prepared by interfacial polycondensation polymerisation with addition of modifier to produce more stable microcapsules. In this research, development of the RMR was applied for producing polymer particles stabilised by nanoparticle without any addition of surfactant or modifier. Two types of membrane pores, the square (Type-A) with hydraulic diameter (Dh) of 84 mm and oblong pores with an aspect ratio of 0.33 (Type-B) having Dh of 69 mm was investigated. For the membranes designed in this research, pore shape A membrane could produce good uniformity in both polyurea microcapsule and polymer particle. In the polymer stabilised particle, this membrane type obtained a narrower size distribution than the usage for o/w emulsification. Reasonable uniform particles at high membrane rotation speed could also be achieved with the use of Type-A membrane. The uniformity confirmed that there was only minor breakup of products during operation at high membrane rotation. This attractive feature was significant in the production of fragile or shear-sensitive particulate products since the delicate structure of these products is possibly easy to destroy at high membrane rotation speed.  Keywords: polyurea microcapsules; particles stabilised nanoparticles; slotted pore","PeriodicalId":20874,"journal":{"name":"Reaktor","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14710/reaktor.20.1.47-56","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaktor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/reaktor.20.1.47-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rotating membrane emulsification (RMR) has been intensively developed and applied for producing emulsion as well as particulate products such as microcapsules. Polyurea microcapsules were generally prepared by interfacial polycondensation polymerisation with addition of modifier to produce more stable microcapsules. In this research, development of the RMR was applied for producing polymer particles stabilised by nanoparticle without any addition of surfactant or modifier. Two types of membrane pores, the square (Type-A) with hydraulic diameter (Dh) of 84 mm and oblong pores with an aspect ratio of 0.33 (Type-B) having Dh of 69 mm was investigated. For the membranes designed in this research, pore shape A membrane could produce good uniformity in both polyurea microcapsule and polymer particle. In the polymer stabilised particle, this membrane type obtained a narrower size distribution than the usage for o/w emulsification. Reasonable uniform particles at high membrane rotation speed could also be achieved with the use of Type-A membrane. The uniformity confirmed that there was only minor breakup of products during operation at high membrane rotation. This attractive feature was significant in the production of fragile or shear-sensitive particulate products since the delicate structure of these products is possibly easy to destroy at high membrane rotation speed.  Keywords: polyurea microcapsules; particles stabilised nanoparticles; slotted pore
方形和长方形孔隙形状在旋转膜乳化生产新型颗粒产品中的应用
旋转膜乳化(RMR)技术在乳液及微胶囊等颗粒产品的生产中得到了广泛的应用。聚脲微胶囊的制备一般采用界面缩聚聚合的方法,并添加改性剂,以获得更稳定的微胶囊。在本研究中,RMR的发展被应用于制备由纳米颗粒稳定的聚合物颗粒,而不添加任何表面活性剂或改性剂。研究了两种类型的膜孔,即水力直径(Dh)为84 mm的方形孔(a型)和长径比为0.33、Dh为69 mm的长方形孔(b型)。对于本研究设计的膜,孔型A膜在聚脲微胶囊和聚合物颗粒中均具有良好的均匀性。在聚合物稳定颗粒中,这种类型的膜比o/w乳化的膜尺寸分布更窄。采用a型膜,在高膜转速下也能达到合理的均匀颗粒。均匀性证实,在高膜旋转操作过程中,产品只有轻微的破裂。在生产易碎或剪切敏感颗粒产品时,这一吸引人的特性是重要的,因为这些产品的微妙结构在高膜转速下很容易被破坏。关键词:聚脲微胶囊;稳定的纳米颗粒;长圆孔
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信