Removing parametrized rays symplectically

IF 0.6 3区 数学 Q3 MATHEMATICS
B. Stratmann
{"title":"Removing parametrized rays symplectically","authors":"B. Stratmann","doi":"10.4310/jsg.2022.v20.n2.a4","DOIUrl":null,"url":null,"abstract":"Extracting isolated rays from a symplectic manifold result in a manifold symplectomorphic to the initial one. The same holds for higher dimensional parametrized rays under an additional condition. More precisely, let $(M,\\omega)$ be a symplectic manifold. Let $[0,\\infty)\\times Q\\subset\\mathbb{R}\\times Q$ be considered as parametrized rays $[0,\\infty)$ and let $\\varphi:[-1,\\infty)\\times Q\\to M$ be an injective, proper, continuous map immersive on $(-1,\\infty)\\times Q$. If for the standard vector field $\\frac{\\partial}{\\partial t}$ on $\\mathbb{R}$ and any further vector field $\\nu$ tangent to $(-1,\\infty)\\times Q$ the equation $\\varphi^*\\omega(\\frac{\\partial}{\\partial t},\\nu)=0$ holds then $M$ and $M\\setminus \\varphi([0,\\infty)\\times Q)$ are symplectomorphic.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"105 6","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Extracting isolated rays from a symplectic manifold result in a manifold symplectomorphic to the initial one. The same holds for higher dimensional parametrized rays under an additional condition. More precisely, let $(M,\omega)$ be a symplectic manifold. Let $[0,\infty)\times Q\subset\mathbb{R}\times Q$ be considered as parametrized rays $[0,\infty)$ and let $\varphi:[-1,\infty)\times Q\to M$ be an injective, proper, continuous map immersive on $(-1,\infty)\times Q$. If for the standard vector field $\frac{\partial}{\partial t}$ on $\mathbb{R}$ and any further vector field $\nu$ tangent to $(-1,\infty)\times Q$ the equation $\varphi^*\omega(\frac{\partial}{\partial t},\nu)=0$ holds then $M$ and $M\setminus \varphi([0,\infty)\times Q)$ are symplectomorphic.
辛地去除参数化射线
从辛流形中提取孤立射线,得到的流形与初始流形的辛同构。在附加条件下,这同样适用于高维参数化射线。更准确地说,假设$(M,\omega)$是一个辛流形。将$[0,\infty)\times Q\subset\mathbb{R}\times Q$视为参数化射线$[0,\infty)$,并将$\varphi:[-1,\infty)\times Q\to M$视为沉浸在$(-1,\infty)\times Q$上的一个注入的、适当的、连续的地图。如果对于$\mathbb{R}$上的标准向量场$\frac{\partial}{\partial t}$和任何与$(-1,\infty)\times Q$相切的更远的向量场$\nu$,方程$\varphi^*\omega(\frac{\partial}{\partial t},\nu)=0$成立,那么$M$和$M\setminus \varphi([0,\infty)\times Q)$是辛形态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信