S. Reddy, Mahesh Gadiraju, N. Preethi, V.V.R.Maheswara Rao, Researc H Article
{"title":"A Novel Approach for Prediction of Gestational Diabetes based on Clinical Signs and Risk Factors","authors":"S. Reddy, Mahesh Gadiraju, N. Preethi, V.V.R.Maheswara Rao, Researc H Article","doi":"10.4108/eetsis.v10i3.2697","DOIUrl":null,"url":null,"abstract":"Gestational diabetes mellitus occurs due to high glucose levels in the blood. Pregnant women are affected by this type of diabetes. A blood test is to be performed to identify diabetes. The Oral Glucose Tolerance Test (OGTT) is a blood test performed between the 24th and 28th week of pregnancy that is necessary to identify and overcome the side effects of GDM. The main objective of this work is to train a model by utilizing the training data, evaluate the trained model using the test data, and compare existing machine learning algorithms with a Gradient boosting machine (GBM) to achieve a better model for the effective prediction of gestational diabetes. In this work, the analysis was done with a few existing algorithms and the Extreme learning machine and Gradient boosting techniques. The k-fold cross-validation technique is applied with values of k as 3, 5, and 10 to obtain better performance. The existing algorithms implemented are the Naive Bayes classifier, Support Vector Machine, K-Nearest Neighbour, ID3, CART and J48. The proposed algorithms are Gradient boosting and ELM. These algorithms are implemented in R programming. The metrics like accuracy, kappa statistic, sensitivity/Recall, specificity, precision, f-measure and AUC are used to compare all the algorithms. GBM has obtained better performance than existing algorithms. Then finally, GBM is compared with the other proposed robust Machine Learning algorithm, namely the Extreme learning machine, and the GBM performed better. So, It is recommended to use a gradient-boosting algorithm to predict gestational diabetes effectively.\n ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v10i3.2697","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Gestational diabetes mellitus occurs due to high glucose levels in the blood. Pregnant women are affected by this type of diabetes. A blood test is to be performed to identify diabetes. The Oral Glucose Tolerance Test (OGTT) is a blood test performed between the 24th and 28th week of pregnancy that is necessary to identify and overcome the side effects of GDM. The main objective of this work is to train a model by utilizing the training data, evaluate the trained model using the test data, and compare existing machine learning algorithms with a Gradient boosting machine (GBM) to achieve a better model for the effective prediction of gestational diabetes. In this work, the analysis was done with a few existing algorithms and the Extreme learning machine and Gradient boosting techniques. The k-fold cross-validation technique is applied with values of k as 3, 5, and 10 to obtain better performance. The existing algorithms implemented are the Naive Bayes classifier, Support Vector Machine, K-Nearest Neighbour, ID3, CART and J48. The proposed algorithms are Gradient boosting and ELM. These algorithms are implemented in R programming. The metrics like accuracy, kappa statistic, sensitivity/Recall, specificity, precision, f-measure and AUC are used to compare all the algorithms. GBM has obtained better performance than existing algorithms. Then finally, GBM is compared with the other proposed robust Machine Learning algorithm, namely the Extreme learning machine, and the GBM performed better. So, It is recommended to use a gradient-boosting algorithm to predict gestational diabetes effectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.