Aldwin Suryo Rahmanto, Christian J. Blum, Claudia Scalera, Jan B. Heidelberger, Mikhail Mesitov, Daniel Horn-Ghetko, Justus F. Gräf, Ivan Mikicic, Rebecca Hobrecht, Anna Orekhova, Matthias Ostermaier, Stefanie Ebersberger, Martin M. Möckel, Nils Krapoth, Nádia Da Silva Fernandes, Athanasia Mizi, Yajie Zhu, Jia-Xuan Chen, Chunaram Choudhary, Argyris Papantonis, Petra Beli
{"title":"K6-linked ubiquitylation marks formaldehyde-induced RNA-protein crosslinks for resolution","authors":"Aldwin Suryo Rahmanto, Christian J. Blum, Claudia Scalera, Jan B. Heidelberger, Mikhail Mesitov, Daniel Horn-Ghetko, Justus F. Gräf, Ivan Mikicic, Rebecca Hobrecht, Anna Orekhova, Matthias Ostermaier, Stefanie Ebersberger, Martin M. Möckel, Nils Krapoth, Nádia Da Silva Fernandes, Athanasia Mizi, Yajie Zhu, Jia-Xuan Chen, Chunaram Choudhary, Argyris Papantonis, Petra Beli","doi":"10.1016/j.molcel.2023.10.011","DOIUrl":null,"url":null,"abstract":"<p>Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"2 21","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2023.10.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.