{"title":"Relations between scaling exponents in unimodular random graphs","authors":"James R. Lee","doi":"10.1007/s00039-023-00654-7","DOIUrl":null,"url":null,"abstract":"<p>We investigate the validity of the “Einstein relations” in the general setting of unimodular random networks. These are equalities relating scaling exponents: </p><span> $$\\begin{aligned} d_{w} &= d_{f} + \\tilde{\\zeta }, \\\\ d_{s} &= 2 d_{f}/d_{w}, \\end{aligned}$$ </span><p> where <i>d</i><sub><i>w</i></sub> is the walk dimension, <i>d</i><sub><i>f</i></sub> is the fractal dimension, <i>d</i><sub><i>s</i></sub> is the spectral dimension, and <span>\\(\\tilde{\\zeta }\\)</span> is the resistance exponent. Roughly speaking, this relates the mean displacement and return probability of a random walker to the density and conductivity of the underlying medium. We show that if <i>d</i><sub><i>f</i></sub> and <span>\\(\\tilde{\\zeta } \\geqslant 0\\)</span> exist, then <i>d</i><sub><i>w</i></sub> and <i>d</i><sub><i>s</i></sub> exist, and the aforementioned equalities hold. Moreover, our primary new estimate <span>\\(d_{w} \\geqslant d_{f} + \\tilde{\\zeta }\\)</span> is established for all <span>\\(\\tilde{\\zeta } \\in \\mathbb{R}\\)</span>.</p><p>For the uniform infinite planar triangulation (UIPT), this yields the consequence <i>d</i><sub><i>w</i></sub>=4 using <i>d</i><sub><i>f</i></sub>=4 (Angel in Geom. Funct. Anal. 13(5):935–974, 2003) and <span>\\(\\tilde{\\zeta }=0\\)</span> (established here as a consequence of the Liouville Quantum Gravity theory, following Gwynne-Miller 2020 and (Ding and Gwynne in Commun. Math. Phys. 374(3):1877–1934, 2020)). The conclusion <i>d</i><sub><i>w</i></sub>=4 had been previously established by Gwynne and Hutchcroft (2018) using more elaborate methods. A new consequence is that <i>d</i><sub><i>w</i></sub>=<i>d</i><sub><i>f</i></sub> for the uniform infinite Schnyder-wood decorated triangulation, implying that the simple random walk is subdiffusive, since <i>d</i><sub><i>f</i></sub>>2.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00654-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
Abstract
We investigate the validity of the “Einstein relations” in the general setting of unimodular random networks. These are equalities relating scaling exponents:
where dw is the walk dimension, df is the fractal dimension, ds is the spectral dimension, and \(\tilde{\zeta }\) is the resistance exponent. Roughly speaking, this relates the mean displacement and return probability of a random walker to the density and conductivity of the underlying medium. We show that if df and \(\tilde{\zeta } \geqslant 0\) exist, then dw and ds exist, and the aforementioned equalities hold. Moreover, our primary new estimate \(d_{w} \geqslant d_{f} + \tilde{\zeta }\) is established for all \(\tilde{\zeta } \in \mathbb{R}\).
For the uniform infinite planar triangulation (UIPT), this yields the consequence dw=4 using df=4 (Angel in Geom. Funct. Anal. 13(5):935–974, 2003) and \(\tilde{\zeta }=0\) (established here as a consequence of the Liouville Quantum Gravity theory, following Gwynne-Miller 2020 and (Ding and Gwynne in Commun. Math. Phys. 374(3):1877–1934, 2020)). The conclusion dw=4 had been previously established by Gwynne and Hutchcroft (2018) using more elaborate methods. A new consequence is that dw=df for the uniform infinite Schnyder-wood decorated triangulation, implying that the simple random walk is subdiffusive, since df>2.