How many samples?: a Bayesian nonparametric approach

Stephen G. Walker
{"title":"How many samples?: a Bayesian nonparametric approach","authors":"Stephen G. Walker","doi":"10.1046/j.1467-9884.2003.00373.x","DOIUrl":null,"url":null,"abstract":"<p><b>Summary. </b> The paper considers a Bayesian nonparametric decision theoretic approach to sample size calculations, where the ultimate goal is to make a terminal action from a finite set of actions. This terminal action is made via <i>the maximization of expected utility</i>, the maximization being made with respect to a probability measure on the <i>states of nature</i>. The probability measure depends on the amount of information, i.e. the number of samples collected. It is the prior in the case of no samples and the posterior when samples have been taken.</p>","PeriodicalId":100846,"journal":{"name":"Journal of the Royal Statistical Society: Series D (The Statistician)","volume":"52 4","pages":"475-482"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1467-9884.2003.00373.x","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society: Series D (The Statistician)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1046/j.1467-9884.2003.00373.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Summary. The paper considers a Bayesian nonparametric decision theoretic approach to sample size calculations, where the ultimate goal is to make a terminal action from a finite set of actions. This terminal action is made via the maximization of expected utility, the maximization being made with respect to a probability measure on the states of nature. The probability measure depends on the amount of information, i.e. the number of samples collected. It is the prior in the case of no samples and the posterior when samples have been taken.

有多少样品?:一种贝叶斯非参数方法
总结本文考虑了一种用于样本量计算的贝叶斯非参数决策理论方法,其中最终目标是从有限的动作集中做出最终动作。这种最终行动是通过预期效用的最大化来实现的,最大化是关于自然状态的概率测度来实现的。概率度量取决于信息量,即收集的样本数量。在没有样本的情况下,它是先验的,而在已经采样的情况下是后验的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信