{"title":"Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form","authors":"Baptiste Trey","doi":"10.1016/j.anihpc.2020.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider minimizers of the functional<span><span><span><math><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mi>Λ</mi><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>,</mo><mspace></mspace><mo>:</mo><mspace></mspace><mi>Ω</mi><mo>⊂</mo><mi>D</mi><mtext> open</mtext><mo>}</mo></math></span></span></span> where <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is a bounded open set and where <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> are the first <em>k</em><span><span> eigenvalues on Ω of an operator in divergence form with </span>Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets </span><span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> have finite perimeter and that their free boundary <span><math><mo>∂</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∩</mo><mi>D</mi></math></span> is composed of a <em>regular part</em>, which is locally the graph of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regular function, and a <span><em>singular part</em></span>, which is empty if <span><math><mi>d</mi><mo><</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, discrete if <span><math><mi>d</mi><mo>=</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span><span> and of Hausdorff dimension at most </span><span><math><mi>d</mi><mo>−</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> if <span><math><mi>d</mi><mo>></mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, for some <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><mo>{</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>}</mo></math></span>.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 5","pages":"Pages 1337-1371"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.002","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S029414492030113X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper we consider minimizers of the functional where is a bounded open set and where are the first k eigenvalues on Ω of an operator in divergence form with Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets have finite perimeter and that their free boundary is composed of a regular part, which is locally the graph of a -regular function, and a singular part, which is empty if , discrete if and of Hausdorff dimension at most if , for some .
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.