{"title":"Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form","authors":"Baptiste Trey","doi":"10.1016/j.anihpc.2020.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider minimizers of the functional<span><span><span><math><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>+</mo><mi>Λ</mi><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>,</mo><mspace></mspace><mo>:</mo><mspace></mspace><mi>Ω</mi><mo>⊂</mo><mi>D</mi><mtext> open</mtext><mo>}</mo></math></span></span></span> where <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is a bounded open set and where <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> are the first <em>k</em><span><span> eigenvalues on Ω of an operator in divergence form with </span>Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets </span><span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> have finite perimeter and that their free boundary <span><math><mo>∂</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∩</mo><mi>D</mi></math></span> is composed of a <em>regular part</em>, which is locally the graph of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regular function, and a <span><em>singular part</em></span>, which is empty if <span><math><mi>d</mi><mo><</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, discrete if <span><math><mi>d</mi><mo>=</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span><span> and of Hausdorff dimension at most </span><span><math><mi>d</mi><mo>−</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> if <span><math><mi>d</mi><mo>></mo><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, for some <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∈</mo><mo>{</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>}</mo></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.002","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S029414492030113X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper we consider minimizers of the functional where is a bounded open set and where are the first k eigenvalues on Ω of an operator in divergence form with Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets have finite perimeter and that their free boundary is composed of a regular part, which is locally the graph of a -regular function, and a singular part, which is empty if , discrete if and of Hausdorff dimension at most if , for some .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.