{"title":"Conditional stability of multi-solitons for the 1D NLKG equation with double power nonlinearity","authors":"Xu Yuan","doi":"10.1016/j.anihpc.2020.11.008","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the one-dimensional nonlinear Klein-Gordon equation with a double power focusing-defocusing nonlinearity<span><span><span><math><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>−</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mi>R</mi><mo>,</mo></math></span></span></span> where <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>. The main result states the stability in the energy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span><span> of the sums of decoupled solitary waves with different speeds, up to the natural instabilities. The proof is inspired by the techniques developed for the generalized Korteweg-de Vries equation and the nonlinear Schrödinger equation in a similar context by Martel, Merle and Tsai </span><span>[14]</span>, <span>[15]</span>. However, the adaptation of this strategy to a wave-type equation requires the introduction of a new energy functional adapted to the Lorentz transform.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301190","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the one-dimensional nonlinear Klein-Gordon equation with a double power focusing-defocusing nonlinearity where . The main result states the stability in the energy space of the sums of decoupled solitary waves with different speeds, up to the natural instabilities. The proof is inspired by the techniques developed for the generalized Korteweg-de Vries equation and the nonlinear Schrödinger equation in a similar context by Martel, Merle and Tsai [14], [15]. However, the adaptation of this strategy to a wave-type equation requires the introduction of a new energy functional adapted to the Lorentz transform.
我们考虑一维非线性Klein-Gordon方程,该方程具有双焦度聚焦散焦非线性?t2u−?x2u+u−| u | p−1u+| u | q−1u=0,关于[0,∞)×R,其中1<;q<;p<;∞。主要结果表明了不同速度的解耦孤立波之和在能量空间H1(R)×L2(R)中的稳定性,直至自然不稳定性。该证明受到了Martel、Merle和Tsai[14]在类似情况下为广义Korteweg-de-Vries方程和非线性Schrödinger方程开发的技术的启发,[15]。然而,要使这种策略适应波动型方程,需要引入一种适应洛伦兹变换的新能量泛函。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.