Maria Colombo , Gianluca Crippa , Elio Marconi , Laura V. Spinolo
{"title":"Local limit of nonlocal traffic models: Convergence results and total variation blow-up","authors":"Maria Colombo , Gianluca Crippa , Elio Marconi , Laura V. Spinolo","doi":"10.1016/j.anihpc.2020.12.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Consider a nonlocal conservation law where the flux function depends on the </span>convolution of the solution with a given kernel. In the singular local limit obtained by letting the convolution kernel converge to the Dirac delta one formally recovers a conservation law. However, recent counter-examples show that in general the solutions of the nonlocal equations do not converge to a solution of the conservation law. In this work we focus on nonlocal conservation laws modeling vehicular traffic: in this case, the convolution kernel is anisotropic. We show that, under fairly general assumptions on the (anisotropic) convolution kernel, the nonlocal-to-local limit can be rigorously justified provided the </span>initial datum<span> satisfies a one-sided Lipschitz condition and is bounded away from 0. We also exhibit a counter-example showing that, if the initial datum attains the value 0, then there are severe obstructions to a convergence proof.</span></p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 5","pages":"Pages 1653-1666"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.12.002","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301220","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 21
Abstract
Consider a nonlocal conservation law where the flux function depends on the convolution of the solution with a given kernel. In the singular local limit obtained by letting the convolution kernel converge to the Dirac delta one formally recovers a conservation law. However, recent counter-examples show that in general the solutions of the nonlocal equations do not converge to a solution of the conservation law. In this work we focus on nonlocal conservation laws modeling vehicular traffic: in this case, the convolution kernel is anisotropic. We show that, under fairly general assumptions on the (anisotropic) convolution kernel, the nonlocal-to-local limit can be rigorously justified provided the initial datum satisfies a one-sided Lipschitz condition and is bounded away from 0. We also exhibit a counter-example showing that, if the initial datum attains the value 0, then there are severe obstructions to a convergence proof.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.