HSSDA: Hierarchical relation aided Semi-Supervised Domain Adaptation

Xiechao Guo , Ruiping Liu , Dandan Song
{"title":"HSSDA: Hierarchical relation aided Semi-Supervised Domain Adaptation","authors":"Xiechao Guo ,&nbsp;Ruiping Liu ,&nbsp;Dandan Song","doi":"10.1016/j.aiopen.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The mainstream domain adaptation (DA) methods transfer the supervised source domain knowledge to the unsupervised or semi-supervised target domain, so as to assist the classification task in the target domain. Usually the supervision only contains the class label of the object. However, when human beings recognize a new object, they will not only learn the class label of the object, but also correlate the object to its parent class, and use this information to learn the similarities and differences between child classes. Our model utilizes hierarchical relations via making the parent class label of labeled data (all the source domain data and part of target domain data) as a part of supervision to guide prototype learning module vbfd to learn the parent class information encoding, so that the prototypes of the same parent class are closer in the prototype space, which leads to better classification results. Inspired by this mechanism, we propose a <strong>Hierarchical relation aided Semi-Supervised Domain Adaptation (HSSDA)</strong> method which incorporates the hierarchical relations into the Semi-Supervised Domain Adaptation (SSDA) method to improve the classification results of the model. Our model performs well on the DomainNet dataset, and gets the state-of-the-art results in the semi-supervised DA problem.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 156-161"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266665102200016X/pdfft?md5=acdf10fbc8ecc16b703bc63cf409d5c7&pid=1-s2.0-S266665102200016X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266665102200016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mainstream domain adaptation (DA) methods transfer the supervised source domain knowledge to the unsupervised or semi-supervised target domain, so as to assist the classification task in the target domain. Usually the supervision only contains the class label of the object. However, when human beings recognize a new object, they will not only learn the class label of the object, but also correlate the object to its parent class, and use this information to learn the similarities and differences between child classes. Our model utilizes hierarchical relations via making the parent class label of labeled data (all the source domain data and part of target domain data) as a part of supervision to guide prototype learning module vbfd to learn the parent class information encoding, so that the prototypes of the same parent class are closer in the prototype space, which leads to better classification results. Inspired by this mechanism, we propose a Hierarchical relation aided Semi-Supervised Domain Adaptation (HSSDA) method which incorporates the hierarchical relations into the Semi-Supervised Domain Adaptation (SSDA) method to improve the classification results of the model. Our model performs well on the DomainNet dataset, and gets the state-of-the-art results in the semi-supervised DA problem.

HSSDA:层次关系辅助的半监督域自适应
主流的领域自适应(DA)方法将有监督的源领域知识转移到无监督或半监督的目标领域,以辅助目标领域中的分类任务。通常监督只包含对象的类标签。然而,当人类识别出一个新对象时,他们不仅会学习该对象的类标签,还会将该对象与其父类关联起来,并利用这些信息来学习子类之间的异同。我们的模型利用层次关系,将标记数据(所有源域数据和部分目标域数据)的父类标签作为监督的一部分,指导原型学习模块vbfd学习父类信息编码,使同一父类的原型在原型空间中更近,从而获得更好的分类结果。受此机制的启发,我们提出了一种层次关系辅助半监督域自适应(HSSDA)方法,该方法将层次关系纳入半监督域适应(SSDA)方法中,以提高模型的分类结果。我们的模型在DomainNet数据集上表现良好,并在半监督DA问题中获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信