Relativistic properties and invariants of the Du Fort–Frankel scheme for the one-dimensional Schrödinger equation

Paul J. Dellar
{"title":"Relativistic properties and invariants of the Du Fort–Frankel scheme for the one-dimensional Schrödinger equation","authors":"Paul J. Dellar","doi":"10.1016/j.jcpx.2019.100004","DOIUrl":null,"url":null,"abstract":"<div><p>The Du Fort–Frankel scheme for the one-dimensional Schrödinger equation is shown to be equivalent, under a time-dependent unitary transformation, to the Ablowitz–Kruskal–Ladik scheme for the Klein–Gordon equation. The Schrödinger equation describes a non-relativistic quantum particle, while the Klein–Gordon equation describes a relativistic particle. The conditional convergence of the Du Fort–Frankel scheme to solutions of the Schrödinger equation arises because solutions of the Klein–Gordon equation only approximate solutions of the Schrödinger equation in the non-relativistic limit. The time-dependent unitary transformation is the discrete analog of the transformation that arises from seeking a non-relativistic limit using the interaction picture of quantum mechanics to decompose the Klein–Gordon Hamiltonian into the relativistic rest energy and a remainder. The Ablowitz–Kruskal–Ladik scheme is in turn decomposed into a quantum lattice gas automaton for the one-dimensional Dirac equation, which is also the one-dimensional discrete time quantum walk. This relativistic interpretation clarifies the origin of the known discrete invariant of the Du Fort–Frankel scheme as expressing conservation of probability for the 2-component wavefunction in the one-dimensional Dirac equation under discrete unitary evolution. It also leads to a second invariant, the matrix element of the evolution operator, whose imaginary part gives a discrete approximation to the expectation of the non-relativistic Schrödinger Hamiltonian.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"2 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055219300034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Du Fort–Frankel scheme for the one-dimensional Schrödinger equation is shown to be equivalent, under a time-dependent unitary transformation, to the Ablowitz–Kruskal–Ladik scheme for the Klein–Gordon equation. The Schrödinger equation describes a non-relativistic quantum particle, while the Klein–Gordon equation describes a relativistic particle. The conditional convergence of the Du Fort–Frankel scheme to solutions of the Schrödinger equation arises because solutions of the Klein–Gordon equation only approximate solutions of the Schrödinger equation in the non-relativistic limit. The time-dependent unitary transformation is the discrete analog of the transformation that arises from seeking a non-relativistic limit using the interaction picture of quantum mechanics to decompose the Klein–Gordon Hamiltonian into the relativistic rest energy and a remainder. The Ablowitz–Kruskal–Ladik scheme is in turn decomposed into a quantum lattice gas automaton for the one-dimensional Dirac equation, which is also the one-dimensional discrete time quantum walk. This relativistic interpretation clarifies the origin of the known discrete invariant of the Du Fort–Frankel scheme as expressing conservation of probability for the 2-component wavefunction in the one-dimensional Dirac equation under discrete unitary evolution. It also leads to a second invariant, the matrix element of the evolution operator, whose imaginary part gives a discrete approximation to the expectation of the non-relativistic Schrödinger Hamiltonian.

一维Schrödinger方程Du-Fort–Frankel格式的相对论性质和不变量
一维薛定谔方程的Du-Fort–Frankel格式在含时酉变换下与Klein–Gordon方程的Ablowitz–Kruskal–Ladik格式等价。薛定谔方程描述的是非相对论性量子粒子,而克莱因-戈登方程描述的则是相对论性粒子。Du-Fort–Frankel格式对薛定谔方程解的条件收敛性是因为Klein–Gordon方程的解在非相对论极限下仅近似于薛定谔方程的解。含时酉变换是利用量子力学的相互作用图将克莱因-戈登哈密顿量分解为相对论剩余能和余数来寻求非相对论极限所产生的变换的离散模拟。Ablowitz–Kruskal–Ladik格式又被分解为一维Dirac方程的量子晶格气体自动机,这也是一维离散时间量子行走。这种相对论性解释阐明了Du-Fort–Frankel格式的已知离散不变量的起源,即表示离散酉演化下一维Dirac方程中双分量波函数的概率守恒。它还导致了第二个不变量,即演化算子的矩阵元素,其虚部给出了非相对论性薛定谔哈密顿量期望的离散近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信