{"title":"Relativistic properties and invariants of the Du Fort–Frankel scheme for the one-dimensional Schrödinger equation","authors":"Paul J. Dellar","doi":"10.1016/j.jcpx.2019.100004","DOIUrl":null,"url":null,"abstract":"<div><p>The Du Fort–Frankel scheme for the one-dimensional Schrödinger equation is shown to be equivalent, under a time-dependent unitary transformation, to the Ablowitz–Kruskal–Ladik scheme for the Klein–Gordon equation. The Schrödinger equation describes a non-relativistic quantum particle, while the Klein–Gordon equation describes a relativistic particle. The conditional convergence of the Du Fort–Frankel scheme to solutions of the Schrödinger equation arises because solutions of the Klein–Gordon equation only approximate solutions of the Schrödinger equation in the non-relativistic limit. The time-dependent unitary transformation is the discrete analog of the transformation that arises from seeking a non-relativistic limit using the interaction picture of quantum mechanics to decompose the Klein–Gordon Hamiltonian into the relativistic rest energy and a remainder. The Ablowitz–Kruskal–Ladik scheme is in turn decomposed into a quantum lattice gas automaton for the one-dimensional Dirac equation, which is also the one-dimensional discrete time quantum walk. This relativistic interpretation clarifies the origin of the known discrete invariant of the Du Fort–Frankel scheme as expressing conservation of probability for the 2-component wavefunction in the one-dimensional Dirac equation under discrete unitary evolution. It also leads to a second invariant, the matrix element of the evolution operator, whose imaginary part gives a discrete approximation to the expectation of the non-relativistic Schrödinger Hamiltonian.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"2 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2019.100004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055219300034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The Du Fort–Frankel scheme for the one-dimensional Schrödinger equation is shown to be equivalent, under a time-dependent unitary transformation, to the Ablowitz–Kruskal–Ladik scheme for the Klein–Gordon equation. The Schrödinger equation describes a non-relativistic quantum particle, while the Klein–Gordon equation describes a relativistic particle. The conditional convergence of the Du Fort–Frankel scheme to solutions of the Schrödinger equation arises because solutions of the Klein–Gordon equation only approximate solutions of the Schrödinger equation in the non-relativistic limit. The time-dependent unitary transformation is the discrete analog of the transformation that arises from seeking a non-relativistic limit using the interaction picture of quantum mechanics to decompose the Klein–Gordon Hamiltonian into the relativistic rest energy and a remainder. The Ablowitz–Kruskal–Ladik scheme is in turn decomposed into a quantum lattice gas automaton for the one-dimensional Dirac equation, which is also the one-dimensional discrete time quantum walk. This relativistic interpretation clarifies the origin of the known discrete invariant of the Du Fort–Frankel scheme as expressing conservation of probability for the 2-component wavefunction in the one-dimensional Dirac equation under discrete unitary evolution. It also leads to a second invariant, the matrix element of the evolution operator, whose imaginary part gives a discrete approximation to the expectation of the non-relativistic Schrödinger Hamiltonian.