{"title":"Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons","authors":"Xavier Friederich","doi":"10.1016/j.anihpc.2020.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non dispersion.</p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 5","pages":"Pages 1525-1552"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.11.010","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301256","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We consider solutions of the generalized Korteweg-de Vries equations (gKdV) which are non dispersive in some sense and which remain close to multi-solitons. We show that these solutions are necessarily pure multi-solitons. For the Korteweg-de Vries equation (KdV) and the modified Korteweg-de Vries equation (mKdV) in particular, we obtain a characterization of multi-solitons and multi-breathers in terms of non dispersion.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.