{"title":"Asymptotics for peakon-antipeakon collision in a general Camassa-Holm model","authors":"G. Omel'yanov","doi":"10.1016/j.csfx.2023.100101","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze a peakon - antipeakon collision for essentially non-integrable versions of the Camassa-Holm equation. Using the matching and weak asymptotics methods, we construct an asymptotic solution that satisfies both a one-parameter family of equations (with a parameter <em>r</em>), and two energy laws. It is shown that the original waves with amplitudes <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mn>0</mn></math></span> are reflected upon collision and form new waves with amplitudes <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that, depending on the parameter <em>r</em>, either <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are arbitrary numbers provided <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"11 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054423000118/pdfft?md5=346a9cc2d98638294b017dbfb0ae46bc&pid=1-s2.0-S2590054423000118-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054423000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze a peakon - antipeakon collision for essentially non-integrable versions of the Camassa-Holm equation. Using the matching and weak asymptotics methods, we construct an asymptotic solution that satisfies both a one-parameter family of equations (with a parameter r), and two energy laws. It is shown that the original waves with amplitudes and are reflected upon collision and form new waves with amplitudes and such that, depending on the parameter r, either and , or are arbitrary numbers provided .