A parametric study and experimental investigations of microstructure and mechanical properties of multi-layered structure of metal core wire using wire arc additive manufacturing
Rakesh Chaudhari , Rushikesh Bhatt , Vatsal Vaghasia , Bansi D. Raja , Vivek K. Patel , Sakshum Khanna , Jay Vora , Vivek V. Patel
{"title":"A parametric study and experimental investigations of microstructure and mechanical properties of multi-layered structure of metal core wire using wire arc additive manufacturing","authors":"Rakesh Chaudhari , Rushikesh Bhatt , Vatsal Vaghasia , Bansi D. Raja , Vivek K. Patel , Sakshum Khanna , Jay Vora , Vivek V. Patel","doi":"10.1016/j.jajp.2023.100160","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, the Gas metal arc welding (GMAW) based Wire-arc additive manufacturing (WAAM) process was preferred for the fabrication of multi-layered structures and their investigations of mechanical properties on metal core wire. Based on literature work, preliminary trials, machine limits, travel speed (TS), voltage (V), and gas mixture ratio (GMR) were identified as machining parameters along with output factors of bead width (BW), bead height (BH), and depth-of-penetration (DOP). Experiments were conducted by following the Box-Behnken design. The feasibility of the generated non-linear regression models has been validated through the statistical analysis of variance and residual plots. The multi-layered structure has been successfully fabricated at the optimized parametric settings of TS at 24 mm/s; the voltage at 24 V, and GMR at 1 which was obtained through the heat transfer search (HTS) algorithm. The fabricated structure was observed to be uniform. The structure exhibited uniform bead-on-bead deposition for the deposited layers. The fabricated multi-layered structure underwent a detailed microstructural and mechanical examinations. Microstructural examination revealed dense needles at the bottom section of the structure as compared to the top section, as the bottom section undergoes multiple heating and cooling cycles. When comparing the multilayer structure to the metal core wire, all the properties exhibited favorable tensile characteristics. The obtained strength from the impact test results highlights the impressive ductility of the multi-layer deposition. Fractography of tensile and impact test specimens has shown the occurrences of larger dimples and suggested a ductile fracture. Lastly, the hardness value in all the sections of the built structure was observed to be uniform, suggesting uniform deposition across the built multi-layer structure. The authors consider the current work will be highly beneficial for users in fabricating multi-layer structures at optimized parametric settings and their investigations for mechanical properties for metal core wire.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"8 ","pages":"Article 100160"},"PeriodicalIF":3.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330923000225/pdfft?md5=9c7c4ecbca23306ce76096af575ea3c0&pid=1-s2.0-S2666330923000225-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330923000225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
In the present study, the Gas metal arc welding (GMAW) based Wire-arc additive manufacturing (WAAM) process was preferred for the fabrication of multi-layered structures and their investigations of mechanical properties on metal core wire. Based on literature work, preliminary trials, machine limits, travel speed (TS), voltage (V), and gas mixture ratio (GMR) were identified as machining parameters along with output factors of bead width (BW), bead height (BH), and depth-of-penetration (DOP). Experiments were conducted by following the Box-Behnken design. The feasibility of the generated non-linear regression models has been validated through the statistical analysis of variance and residual plots. The multi-layered structure has been successfully fabricated at the optimized parametric settings of TS at 24 mm/s; the voltage at 24 V, and GMR at 1 which was obtained through the heat transfer search (HTS) algorithm. The fabricated structure was observed to be uniform. The structure exhibited uniform bead-on-bead deposition for the deposited layers. The fabricated multi-layered structure underwent a detailed microstructural and mechanical examinations. Microstructural examination revealed dense needles at the bottom section of the structure as compared to the top section, as the bottom section undergoes multiple heating and cooling cycles. When comparing the multilayer structure to the metal core wire, all the properties exhibited favorable tensile characteristics. The obtained strength from the impact test results highlights the impressive ductility of the multi-layer deposition. Fractography of tensile and impact test specimens has shown the occurrences of larger dimples and suggested a ductile fracture. Lastly, the hardness value in all the sections of the built structure was observed to be uniform, suggesting uniform deposition across the built multi-layer structure. The authors consider the current work will be highly beneficial for users in fabricating multi-layer structures at optimized parametric settings and their investigations for mechanical properties for metal core wire.