Hierarchical label with imbalance and attributed network structure fusion for network embedding

Shu Zhao , Jialin Chen , Jie Chen , Yanping Zhang , Jie Tang
{"title":"Hierarchical label with imbalance and attributed network structure fusion for network embedding","authors":"Shu Zhao ,&nbsp;Jialin Chen ,&nbsp;Jie Chen ,&nbsp;Yanping Zhang ,&nbsp;Jie Tang","doi":"10.1016/j.aiopen.2022.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Network embedding (NE) aims to learn low-dimensional vectors for nodes while preserving the network’s essential properties (e.g., attributes and structure). Previous methods have been proposed to learn node representations with encouraging achievements. Recent research has shown that the hierarchical label has potential value in seeking latent hierarchical structures and learning more effective classification information. Nevertheless, most existing network embedding methods either focus on the network without the hierarchical label, or the learning process of hierarchical structure for labels is separate from the network structure. Learning node embedding with the hierarchical label suffers from two challenges: (1) Fusing hierarchical labels and network is still an arduous task. (2) The data volume imbalance under different hierarchical labels is more noticeable than flat labels. This paper proposes a <strong>H</strong>ierarchical Label and <strong>A</strong>ttributed <strong>N</strong>etwork <strong>S</strong>tructure Fusion model(HANS), which realizes the fusion of hierarchical labels and nodes through attributes and the attention-based fusion module. Particularly, HANS designs a directed hierarchy structure encoder for modeling label dependencies in three directions (parent–child, child–parent, and sibling) to strengthen the co-occurrence information between labels of different frequencies and reduce the impact of the label imbalance. Experiments on real-world datasets demonstrate that the proposed method achieves significantly better performance than the state-of-the-art algorithms.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 91-100"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000122/pdfft?md5=b0971b7ac0f357e13fd0e41f95f6412d&pid=1-s2.0-S2666651022000122-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651022000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Network embedding (NE) aims to learn low-dimensional vectors for nodes while preserving the network’s essential properties (e.g., attributes and structure). Previous methods have been proposed to learn node representations with encouraging achievements. Recent research has shown that the hierarchical label has potential value in seeking latent hierarchical structures and learning more effective classification information. Nevertheless, most existing network embedding methods either focus on the network without the hierarchical label, or the learning process of hierarchical structure for labels is separate from the network structure. Learning node embedding with the hierarchical label suffers from two challenges: (1) Fusing hierarchical labels and network is still an arduous task. (2) The data volume imbalance under different hierarchical labels is more noticeable than flat labels. This paper proposes a Hierarchical Label and Attributed Network Structure Fusion model(HANS), which realizes the fusion of hierarchical labels and nodes through attributes and the attention-based fusion module. Particularly, HANS designs a directed hierarchy structure encoder for modeling label dependencies in three directions (parent–child, child–parent, and sibling) to strengthen the co-occurrence information between labels of different frequencies and reduce the impact of the label imbalance. Experiments on real-world datasets demonstrate that the proposed method achieves significantly better performance than the state-of-the-art algorithms.

不平衡分层标签与网络嵌入的属性网络结构融合
网络嵌入(NE)旨在学习节点的低维向量,同时保留网络的基本属性(如属性和结构)。先前已经提出了学习节点表示的方法,并取得了令人鼓舞的成果。最近的研究表明,层次标签在寻找潜在的层次结构和学习更有效的分类信息方面具有潜在的价值。然而,大多数现有的网络嵌入方法要么专注于没有分层标签的网络,要么标签的分层结构学习过程与网络结构分离。使用分层标签嵌入学习节点面临两个挑战:(1)融合分层标签和网络仍然是一项艰巨的任务。(2) 不同层次标签下的数据量失衡比平面标签更明显。本文提出了一种层次标签与属性网络结构融合模型(HANS),通过属性和基于注意力的融合模块实现了层次标签与节点的融合。特别是,HANS设计了一种有向层次结构编码器,用于对三个方向(父-子、子-父和兄弟)的标签依赖性进行建模,以增强不同频率标签之间的共现信息,并减少标签不平衡的影响。在真实世界数据集上的实验表明,所提出的方法比最先进的算法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信