Parallelization of a stochastic Euler-Lagrange model applied to large scale dense bubbly flows

S. Kamath , M.V. Masterov , J.T. Padding , K.A. Buist , M.W. Baltussen , J.A.M. Kuipers
{"title":"Parallelization of a stochastic Euler-Lagrange model applied to large scale dense bubbly flows","authors":"S. Kamath ,&nbsp;M.V. Masterov ,&nbsp;J.T. Padding ,&nbsp;K.A. Buist ,&nbsp;M.W. Baltussen ,&nbsp;J.A.M. Kuipers","doi":"10.1016/j.jcpx.2020.100058","DOIUrl":null,"url":null,"abstract":"<div><p>A parallel and scalable stochastic Direct Simulation Monte Carlo (DSMC) method applied to large-scale dense bubbly flows is reported in this paper. The DSMC method is applied to speed up the bubble-bubble collision handling relative to the Discrete Bubble Model proposed by Darmana et al. (2006) <span>[1]</span>. The DSMC algorithm has been modified and extended to account for bubble-bubble interactions arising due to uncorrelated and correlated bubble velocities. The algorithm is fully coupled with an in-house CFD code and parallelized using the MPI framework. The model is verified and validated on multiple cores with different test cases, ranging from impinging particle streams to laboratory-scale bubble columns. The parallel performance is shown using two different large scale systems: with an uniform and a non-uniform distribution of bubbles. The hydrodynamics of a pilot-scale bubble column is analyzed and the effect of the column scale is reported via the comparison of bubble columns at three different scales.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"8 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100058","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259005522030010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A parallel and scalable stochastic Direct Simulation Monte Carlo (DSMC) method applied to large-scale dense bubbly flows is reported in this paper. The DSMC method is applied to speed up the bubble-bubble collision handling relative to the Discrete Bubble Model proposed by Darmana et al. (2006) [1]. The DSMC algorithm has been modified and extended to account for bubble-bubble interactions arising due to uncorrelated and correlated bubble velocities. The algorithm is fully coupled with an in-house CFD code and parallelized using the MPI framework. The model is verified and validated on multiple cores with different test cases, ranging from impinging particle streams to laboratory-scale bubble columns. The parallel performance is shown using two different large scale systems: with an uniform and a non-uniform distribution of bubbles. The hydrodynamics of a pilot-scale bubble column is analyzed and the effect of the column scale is reported via the comparison of bubble columns at three different scales.

应用于大尺度稠密泡状流的随机欧拉-拉格朗日模型的并行化
本文提出了一种适用于大规模稠密泡状流的并行可扩展随机直接模拟蒙特卡罗(DSMC)方法。相对于Darmana等人提出的离散气泡模型,DSMC方法用于加快气泡-气泡碰撞处理。(2006)[1]。对DSMC算法进行了修改和扩展,以考虑由于不相关和相关的气泡速度引起的气泡-气泡相互作用。该算法与内部CFD代码完全耦合,并使用MPI框架进行并行化。该模型在多个具有不同测试案例的岩心上进行了验证和验证,测试案例包括撞击颗粒流和实验室规模的气泡柱。使用两种不同的大规模系统显示了并行性能:均匀和非均匀分布的气泡。分析了中试规模鼓泡塔的流体动力学,并通过对三种不同规模的鼓泡塔进行比较,报道了鼓泡塔规模的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信