An implicit local time-stepping method based on cell reordering for multiphase flow in porous media

Gaute Linga , Olav Møyner , Halvor Møll Nilsen , Arthur Moncorgé , Knut-Andreas Lie
{"title":"An implicit local time-stepping method based on cell reordering for multiphase flow in porous media","authors":"Gaute Linga ,&nbsp;Olav Møyner ,&nbsp;Halvor Møll Nilsen ,&nbsp;Arthur Moncorgé ,&nbsp;Knut-Andreas Lie","doi":"10.1016/j.jcpx.2020.100051","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss how to introduce local time-step refinements in a sequential implicit method for multiphase flow in porous media. Our approach relies heavily on causality-based optimal ordering, which implies that cells can be ordered according to total fluxes after the pressure field has been computed, leaving the transport problem as a sequence of ordinary differential equations, which can be solved cell-by-cell or block-by-block. The method is suitable for arbitrary local time steps and grids, is mass-conservative, and reduces to the standard implicit upwind finite-volume method in the case of equal time steps in adjacent cells. The method is validated by a series of numerical simulations. We discuss various strategies for selecting local time steps and demonstrate the efficiency of the method and several of these strategies by through a series of numerical examples.</p></div>","PeriodicalId":37045,"journal":{"name":"Journal of Computational Physics: X","volume":"6 ","pages":"Article 100051"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcpx.2020.100051","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590055220300032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We discuss how to introduce local time-step refinements in a sequential implicit method for multiphase flow in porous media. Our approach relies heavily on causality-based optimal ordering, which implies that cells can be ordered according to total fluxes after the pressure field has been computed, leaving the transport problem as a sequence of ordinary differential equations, which can be solved cell-by-cell or block-by-block. The method is suitable for arbitrary local time steps and grids, is mass-conservative, and reduces to the standard implicit upwind finite-volume method in the case of equal time steps in adjacent cells. The method is validated by a series of numerical simulations. We discuss various strategies for selecting local time steps and demonstrate the efficiency of the method and several of these strategies by through a series of numerical examples.

基于单元重排的多孔介质多相流隐式局部时间步进方法
我们讨论了如何在多孔介质中多相流的顺序隐式方法中引入局部时间步长精化。我们的方法在很大程度上依赖于基于因果关系的最优排序,这意味着在计算压力场后,可以根据总流量对细胞进行排序,将传输问题留给一系列常微分方程,可以逐个细胞或逐块求解。该方法适用于任意的局部时间步长和网格,具有质量守恒性,并在相邻单元中时间步长相等的情况下简化为标准隐式逆风有限体积法。该方法通过一系列数值模拟得到了验证。我们讨论了选择局部时间步长的各种策略,并通过一系列数值例子证明了该方法和其中几种策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics: X
Journal of Computational Physics: X Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
6.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信