Manifold-valued Dirichlet Processes.

Hyunwoo J Kim, Jia Xu, Baba C Vemuri, Vikas Singh
{"title":"Manifold-valued Dirichlet Processes.","authors":"Hyunwoo J Kim, Jia Xu, Baba C Vemuri, Vikas Singh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined <i>locally</i> for most cases - this makes it hard to design parametric models <i>globally</i> on smooth manifolds. Thus, most (manifold specific) parametric models available today assume that the data lie in a small neighborhood on the manifold. To address this 'locality' problem, we propose a novel nonparametric model which unifies multivariate general linear models (MGLMs) using multiple tangent spaces. Our framework generalizes existing work on (both Euclidean and non-Euclidean) general linear models providing a recipe to globally extend the locally-defined parametric models (using a mixture of local models). By grouping observations into sub-populations at multiple tangent spaces, our method provides insights into the hidden structure (geodesic relationships) in the data. This yields a framework to group observations and discover geodesic relationships between covariates <i>X</i> and manifold-valued responses <i>Y</i>, which we call Dirichlet process mixtures of multivariate general linear models (DP-MGLM) on Riemannian manifolds. Finally, we present proof of concept experiments to validate our model.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"2015 ","pages":"1199-1208"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined locally for most cases - this makes it hard to design parametric models globally on smooth manifolds. Thus, most (manifold specific) parametric models available today assume that the data lie in a small neighborhood on the manifold. To address this 'locality' problem, we propose a novel nonparametric model which unifies multivariate general linear models (MGLMs) using multiple tangent spaces. Our framework generalizes existing work on (both Euclidean and non-Euclidean) general linear models providing a recipe to globally extend the locally-defined parametric models (using a mixture of local models). By grouping observations into sub-populations at multiple tangent spaces, our method provides insights into the hidden structure (geodesic relationships) in the data. This yields a framework to group observations and discover geodesic relationships between covariates X and manifold-valued responses Y, which we call Dirichlet process mixtures of multivariate general linear models (DP-MGLM) on Riemannian manifolds. Finally, we present proof of concept experiments to validate our model.

流形值Dirichlet过程。
多值数据的统计模型可以捕捉数据所在的曲线空间的内在性质,几十年来一直是研究的主题。通常,这些公式在大多数情况下使用局部定义的测地曲线和距离,这使得很难在光滑流形上全局设计参数模型。因此,目前可用的大多数(流形特定的)参数模型都假设数据位于流形上的一个小邻域内。为了解决这个“局部性”问题,我们提出了一种新的非参数模型,该模型使用多个切空间统一了多变量广义线性模型(MGLMs)。我们的框架概括了现有的(欧几里得和非欧几里得)一般线性模型的工作,提供了全局扩展局部定义的参数模型(使用局部模型的混合)的方法。通过在多个切线空间将观测分组为子总体,我们的方法可以深入了解数据中的隐藏结构(测地线关系)。这产生了一个对观测进行分组并发现协变量X和流形值响应Y之间的测地关系的框架,我们称之为黎曼流形上的多元广义线性模型的狄利克雷过程混合物(DP-MGLM)。最后,我们给出了概念验证实验来验证我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信