Kristian Barry, Christopher Harpur, Maggie Lam, Michelle D Tate, Ashley Mansell
{"title":"Aggregated Hendra virus C-protein activates the NLRP3 inflammasome to induce inflammation.","authors":"Kristian Barry, Christopher Harpur, Maggie Lam, Michelle D Tate, Ashley Mansell","doi":"10.1186/s12950-023-00365-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hendra virus is an emerging virus with a geographically broad host reservoir. In humans, Hendra virus causes excessive inflammatory disease of the lung and nervous system. Our current understanding as to how Hendra virus or what factors induce inflammation is limited and as such, there are currently no therapeutic options available for patients who contract Hendra virus. Recent studies have identified viral aggregating proteins as drivers of inflammation in influenza A virus and SARS-CoV-2 virus. In this study, we sought to identify potential aggregating Hendra virus proteins as proof-of-concept that inflammasome activation may induce inflammation and contribute to disease pathology.</p><p><strong>Results: </strong>Here, we have identified that a peptide analogue of Hendra virus C protein (termed HeVc) forms aggregates and activates the NLRP3 inflammasome through phagocytic uptake into cells in vitro. Treatment of cells with the specific NLRP3 inhibitor MCC950 ameliorated IL-1β secretion responses in vitro. Critically, in vivo intranasal inoculation of mice with aggregated HeVc peptide induced pulmonary inflammation, suggesting HeVc may drive immunopathology during infection. Importantly, mice treated with MCC950 demonstrated reduced IL-1β secretion into the bronchoalveolar space, highlighting the role of NLRP3 in host HeV infections and a potential therapeutic strategy to reduce disease pathology.</p><p><strong>Conclusion: </strong>Taken together, these results identify Hendra virus C protein as a possible contributor to immunopathology during Hendra virus infections. Importantly, these studies highlight a potential role for NLRP3 in driving disease-associated inflammation, critically identifying a possible therapeutic strategy to alleviate disease-associated inflammation of infected patients through targeting of the NLRP3 inflammasome.</p>","PeriodicalId":56120,"journal":{"name":"Journal of Inflammation-London","volume":"20 1","pages":"38"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12950-023-00365-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hendra virus is an emerging virus with a geographically broad host reservoir. In humans, Hendra virus causes excessive inflammatory disease of the lung and nervous system. Our current understanding as to how Hendra virus or what factors induce inflammation is limited and as such, there are currently no therapeutic options available for patients who contract Hendra virus. Recent studies have identified viral aggregating proteins as drivers of inflammation in influenza A virus and SARS-CoV-2 virus. In this study, we sought to identify potential aggregating Hendra virus proteins as proof-of-concept that inflammasome activation may induce inflammation and contribute to disease pathology.
Results: Here, we have identified that a peptide analogue of Hendra virus C protein (termed HeVc) forms aggregates and activates the NLRP3 inflammasome through phagocytic uptake into cells in vitro. Treatment of cells with the specific NLRP3 inhibitor MCC950 ameliorated IL-1β secretion responses in vitro. Critically, in vivo intranasal inoculation of mice with aggregated HeVc peptide induced pulmonary inflammation, suggesting HeVc may drive immunopathology during infection. Importantly, mice treated with MCC950 demonstrated reduced IL-1β secretion into the bronchoalveolar space, highlighting the role of NLRP3 in host HeV infections and a potential therapeutic strategy to reduce disease pathology.
Conclusion: Taken together, these results identify Hendra virus C protein as a possible contributor to immunopathology during Hendra virus infections. Importantly, these studies highlight a potential role for NLRP3 in driving disease-associated inflammation, critically identifying a possible therapeutic strategy to alleviate disease-associated inflammation of infected patients through targeting of the NLRP3 inflammasome.
期刊介绍:
Journal of Inflammation welcomes research submissions on all aspects of inflammation.
The five classical symptoms of inflammation, namely redness (rubor), swelling (tumour), heat (calor), pain (dolor) and loss of function (functio laesa), are only part of the story. The term inflammation is taken to include the full range of underlying cellular and molecular mechanisms involved, not only in the production of the inflammatory responses but, more importantly in clinical terms, in the healing process as well. Thus the journal covers molecular, cellular, animal and clinical studies, and related aspects of pharmacology, such as anti-inflammatory drug development, trials and therapeutic developments. It also considers publication of negative findings.
Journal of Inflammation aims to become the leading online journal on inflammation and, as online journals replace printed ones over the next decade, the main open access inflammation journal. Open access guarantees a larger audience, and thus impact, than any restricted access equivalent, and increasingly so, as the escalating costs of printed journals puts them outside University budgets. The unrestricted access to research findings in inflammation aids in promoting dynamic and productive dialogue between industrial and academic members of the inflammation research community, which plays such an important part in the development of future generations of anti-inflammatory therapies.