Hesham Alouthah, Frank Lippert, Chao-Chieh Yang, John A Levon, Wei-Shao Lin
{"title":"Comparison of surface characteristics of denture base resin materials with two surface treatment protocols and simulated brushing.","authors":"Hesham Alouthah, Frank Lippert, Chao-Chieh Yang, John A Levon, Wei-Shao Lin","doi":"10.1111/jopr.13794","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effects of 4 denture base materials, 2 surface treatment protocols, and simulated brushing (SB) on the surface hardness, surface roughness, surface gloss, and the surface loss of denture base materials.</p><p><strong>Materials and methods: </strong>Four denture base resin material groups (compression-molded, injection-molded, 3D-printed, and milled) with two different surface treatment protocols (polished and glazed) were utilized in this study. A total of 80 samples (n = 10) were evaluated for surface hardness (Vickers) before SB. SB was performed for each sample (custom-built V8 cross brushing machine, 50,000 reciprocal strokes). Surface roughness (Ra) was measured before and after SB with a non-contact optical profilometer. Surface gloss was performed using a glossmeter to determine changes in surface reflectivity of the specimens before and after SB. Surface loss (wear resistance) was measured after SB using optical profilometry. The effects of material, surface treatment, and SB on all surface characteristics were examined with two-way and three-way analysis of variance models (ANOVA) (α = 0.05).</p><p><strong>Results: </strong>The polished compression-molded group had significantly higher surface hardness than all other groups. The protective glaze coating significantly increased the surface hardness for all groups (P < 0.001). SB increased the surface roughness of all groups regardless of surface treatments (P < 0.001). The increase in surface roughness after SB was significantly higher with polished surface treatment than with a glazed surface treatment in all groups (P < 0.001). Surface gloss was significantly higher with the glazed surface treatment than with the polished surface treatment for all denture base materials (P < 0.001). After SB, milled denture base material showed the highest, and 3D-printed material showed the second highest surface gloss compared to the other groups (P < 0.001), regardless of surface treatment. In all materials tested, surface glaze significantly decreased surface loss (P < 0.001). With the glaze surface treatment, compression-molded denture base material had significantly less surface loss (more surface gain) than other materials, while with the polished surface treatment, 3D-printed denture base material had the least surface loss when compared with other groups.</p><p><strong>Conclusions: </strong>A single layer of nano-filled, light-polymerizing protective glaze coating has displayed potential for enhancing the longevity of denture base materials, as evidenced by increased hardness and wear resistance. Following simulated brushing, the milled denture material exhibited the highest surface gloss and lowest surface roughness among all groups, regardless of the surface treatment protocol. This indicates that milled denture base material possesses favorable surface properties and may serve as a viable alternative to traditional denture base materials.</p>","PeriodicalId":49152,"journal":{"name":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","volume":" ","pages":"58-67"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jopr.13794","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate the effects of 4 denture base materials, 2 surface treatment protocols, and simulated brushing (SB) on the surface hardness, surface roughness, surface gloss, and the surface loss of denture base materials.
Materials and methods: Four denture base resin material groups (compression-molded, injection-molded, 3D-printed, and milled) with two different surface treatment protocols (polished and glazed) were utilized in this study. A total of 80 samples (n = 10) were evaluated for surface hardness (Vickers) before SB. SB was performed for each sample (custom-built V8 cross brushing machine, 50,000 reciprocal strokes). Surface roughness (Ra) was measured before and after SB with a non-contact optical profilometer. Surface gloss was performed using a glossmeter to determine changes in surface reflectivity of the specimens before and after SB. Surface loss (wear resistance) was measured after SB using optical profilometry. The effects of material, surface treatment, and SB on all surface characteristics were examined with two-way and three-way analysis of variance models (ANOVA) (α = 0.05).
Results: The polished compression-molded group had significantly higher surface hardness than all other groups. The protective glaze coating significantly increased the surface hardness for all groups (P < 0.001). SB increased the surface roughness of all groups regardless of surface treatments (P < 0.001). The increase in surface roughness after SB was significantly higher with polished surface treatment than with a glazed surface treatment in all groups (P < 0.001). Surface gloss was significantly higher with the glazed surface treatment than with the polished surface treatment for all denture base materials (P < 0.001). After SB, milled denture base material showed the highest, and 3D-printed material showed the second highest surface gloss compared to the other groups (P < 0.001), regardless of surface treatment. In all materials tested, surface glaze significantly decreased surface loss (P < 0.001). With the glaze surface treatment, compression-molded denture base material had significantly less surface loss (more surface gain) than other materials, while with the polished surface treatment, 3D-printed denture base material had the least surface loss when compared with other groups.
Conclusions: A single layer of nano-filled, light-polymerizing protective glaze coating has displayed potential for enhancing the longevity of denture base materials, as evidenced by increased hardness and wear resistance. Following simulated brushing, the milled denture material exhibited the highest surface gloss and lowest surface roughness among all groups, regardless of the surface treatment protocol. This indicates that milled denture base material possesses favorable surface properties and may serve as a viable alternative to traditional denture base materials.
期刊介绍:
The Journal of Prosthodontics promotes the advanced study and practice of prosthodontics, implant, esthetic, and reconstructive dentistry. It is the official journal of the American College of Prosthodontists, the American Dental Association-recognized voice of the Specialty of Prosthodontics. The journal publishes evidence-based original scientific articles presenting information that is relevant and useful to prosthodontists. Additionally, it publishes reports of innovative techniques, new instructional methodologies, and instructive clinical reports with an interdisciplinary flair. The journal is particularly focused on promoting the study and use of cutting-edge technology and positioning prosthodontists as the early-adopters of new technology in the dental community.