{"title":"TMNVis: Visual analysis of evolution in temporal multivariate network at multiple granularities","authors":"B. Lu , M. Zhu , Q. He , M. Li , R. Jia","doi":"10.1016/j.jvlc.2017.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Temporal (Dynamic) multivariate networks consist of objects and relationships with a variety of attributes, and the networks change over time. Exploring such kind of networks in visualization is of great significance and full of challenges as its time-varying and multivariate nature. Most of the existing dynamic network visualization techniques focus on the topological structure<span> evolution lacking of exploration on the multivariate data<span> (multiple attributes) thoroughly, and do not cover comprehensive analyses on multiple granularities. In this paper, we propose TMNVis, an interactive visualization system to explore the evolution of temporal multivariate network. Firstly we list a series of tasks on three granularities: global level, subgroup level and individual level. Secondly three main views, which rely mainly on timeline-based method while animation subsidiary, are designed to resolve the analysis tasks. Thirdly we design a series of flexible interactions and develop a prototype system. At last we verify the effectiveness and usefulness of TMNVis using a real-world academic collaboration data.</span></span></p></div>","PeriodicalId":54754,"journal":{"name":"Journal of Visual Languages and Computing","volume":"43 ","pages":"Pages 30-41"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jvlc.2017.03.003","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Languages and Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045926X16301458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4
Abstract
Temporal (Dynamic) multivariate networks consist of objects and relationships with a variety of attributes, and the networks change over time. Exploring such kind of networks in visualization is of great significance and full of challenges as its time-varying and multivariate nature. Most of the existing dynamic network visualization techniques focus on the topological structure evolution lacking of exploration on the multivariate data (multiple attributes) thoroughly, and do not cover comprehensive analyses on multiple granularities. In this paper, we propose TMNVis, an interactive visualization system to explore the evolution of temporal multivariate network. Firstly we list a series of tasks on three granularities: global level, subgroup level and individual level. Secondly three main views, which rely mainly on timeline-based method while animation subsidiary, are designed to resolve the analysis tasks. Thirdly we design a series of flexible interactions and develop a prototype system. At last we verify the effectiveness and usefulness of TMNVis using a real-world academic collaboration data.
期刊介绍:
The Journal of Visual Languages and Computing is a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of visual languages and its implication to the art of computing. The journal publishes research papers, state-of-the-art surveys, and review articles in all aspects of visual languages.