Building data-driven models with microstructural images: Generalization and interpretability

Julia Ling , Maxwell Hutchinson , Erin Antono , Brian DeCost , Elizabeth A. Holm , Bryce Meredig
{"title":"Building data-driven models with microstructural images: Generalization and interpretability","authors":"Julia Ling ,&nbsp;Maxwell Hutchinson ,&nbsp;Erin Antono ,&nbsp;Brian DeCost ,&nbsp;Elizabeth A. Holm ,&nbsp;Bryce Meredig","doi":"10.1016/j.md.2018.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>As data-driven methods rise in popularity in materials science applications, a key question is how these machine learning models can be used to understand microstructure. Given the importance of process–structure–property relations throughout materials science, it seems logical that models that can leverage microstructural data would be more capable of predicting property information. While there have been some recent attempts to use convolutional neural networks to understand microstructural images, these early studies have focused only on which featurizations yield the highest machine learning model accuracy for a single data set. This paper explores the use of convolutional neural networks for classifying microstructure with a more holistic set of objectives in mind: generalization between data sets, number of features required, and interpretability.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"10 ","pages":"Pages 19-28"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2018.03.002","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235292451730042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

As data-driven methods rise in popularity in materials science applications, a key question is how these machine learning models can be used to understand microstructure. Given the importance of process–structure–property relations throughout materials science, it seems logical that models that can leverage microstructural data would be more capable of predicting property information. While there have been some recent attempts to use convolutional neural networks to understand microstructural images, these early studies have focused only on which featurizations yield the highest machine learning model accuracy for a single data set. This paper explores the use of convolutional neural networks for classifying microstructure with a more holistic set of objectives in mind: generalization between data sets, number of features required, and interpretability.

Abstract Image

用微观结构图像构建数据驱动模型:通用性和可解释性
随着数据驱动方法在材料科学应用中越来越受欢迎,一个关键问题是如何使用这些机器学习模型来理解微观结构。考虑到工艺-结构-性能关系在整个材料科学中的重要性,可以利用微观结构数据的模型更有能力预测性能信息似乎是合乎逻辑的。虽然最近有一些尝试使用卷积神经网络来理解微观结构图像,但这些早期的研究只关注哪种特征对单个数据集产生最高的机器学习模型精度。本文探讨了使用卷积神经网络对微观结构进行分类,并考虑到一组更全面的目标:数据集之间的泛化、所需特征的数量和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信