Evolution of MG AZ31 twin activation with strain: A machine learning study

Andrew D. Orme , David T. Fullwood , Michael P. Miles , Christophe Giraud-Carrier
{"title":"Evolution of MG AZ31 twin activation with strain: A machine learning study","authors":"Andrew D. Orme ,&nbsp;David T. Fullwood ,&nbsp;Michael P. Miles ,&nbsp;Christophe Giraud-Carrier","doi":"10.1016/j.md.2018.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain using supervised machine learning. In one approach, strain is incorporated as an implicit attribute in a single predictive model, in a second method, separate decision trees are formed for each strain level. A comparison of the methods shows that the second better uncovers the underlying physics. The correlations revealed are found to exhibit similarities with parameters used in conventional modeling techniques, leading to the conclusion that machine learning has potential to assist in future microstructural modeling.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"12 ","pages":"Pages 20-29"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2018.09.002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352924518300206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain using supervised machine learning. In one approach, strain is incorporated as an implicit attribute in a single predictive model, in a second method, separate decision trees are formed for each strain level. A comparison of the methods shows that the second better uncovers the underlying physics. The correlations revealed are found to exhibit similarities with parameters used in conventional modeling techniques, leading to the conclusion that machine learning has potential to assist in future microstructural modeling.

Abstract Image

MG AZ31孪晶激活随应变的演化:一项机器学习研究
使用监督机器学习研究了AZ31镁中微观结构和孪晶形成之间的复杂关系,作为应变增加的函数。在一种方法中,应变作为隐含属性被纳入单个预测模型中,在第二种方法中为每个应变水平形成单独的决策树。两种方法的比较表明,第二种方法更好地揭示了潜在的物理学。发现所揭示的相关性与传统建模技术中使用的参数表现出相似性,从而得出结论,机器学习有可能帮助未来的微观结构建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信