Ma Qian , J.A Taylor , J.Y Yao , M.J Couper , D.H StJohn
{"title":"A practical method for identifying intermetallic phase particles in aluminium alloys by electron probe microanalysis","authors":"Ma Qian , J.A Taylor , J.Y Yao , M.J Couper , D.H StJohn","doi":"10.1016/S1471-5317(01)00012-8","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminium alloys that contain Si, Mg, Fe, Mn and/or Cu usually contain one or more types of intermetallic phases that are not readily distinguishable in the microstructure by conventional microscopy methods. It has thus been a challenge to develop a method that will unambiguously identify them. A practical approach has been developed that is based on an inherent linear relationship revealed for the overall distribution of any two elements in a precipitate/matrix geometry and the first-order approximation of electron probe microanalysis (EPMA) results. Application of this approach to a direct chill cast 6082 alloy is demonstrated, and its major limitations are discussed.</p></div>","PeriodicalId":100798,"journal":{"name":"Journal of Light Metals","volume":"1 3","pages":"Pages 187-193"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1471-5317(01)00012-8","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Light Metals","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471531701000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Aluminium alloys that contain Si, Mg, Fe, Mn and/or Cu usually contain one or more types of intermetallic phases that are not readily distinguishable in the microstructure by conventional microscopy methods. It has thus been a challenge to develop a method that will unambiguously identify them. A practical approach has been developed that is based on an inherent linear relationship revealed for the overall distribution of any two elements in a precipitate/matrix geometry and the first-order approximation of electron probe microanalysis (EPMA) results. Application of this approach to a direct chill cast 6082 alloy is demonstrated, and its major limitations are discussed.