J.C. Bezdek , R.J. Hathaway
{"title":"Clustering with relational c-means partitions from pairwise distance data","authors":"J.C. Bezdek , R.J. Hathaway","doi":"10.1016/0270-0255(87)90509-4","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":100895,"journal":{"name":"Mathematical Modelling","volume":"9 6","pages":"435-439"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0270-0255(87)90509-4","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0270025587905094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
基于成对距离数据的关系c-均值聚类
传统(或硬)c-均值算法是一种广泛使用的方法,用于在一些数据集X={x1,x2,|,xxn.虽然当x直接可用时,该方法通常会产生良好的硬分区,但当关于要分区的对象的信息仅通过成对平方距离δ的矩阵Δ(xi,xj)可用时,不能应用该方法在本文中,我们提出了一种直接从Δ产生硬c均值聚类的方法,而不参考特征向量{xi}。通过一个简单的数值例子说明了我们的方法。最后,我们指出同样的算法可以推广到模糊c-均值泛函族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。