Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode

Taylor Moot , Olexandr Isayev , Robert W. Call , Shannon M. McCullough , Morgan Zemaitis , Rene Lopez , James F. Cahoon , Alexander Tropsha
{"title":"Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode","authors":"Taylor Moot ,&nbsp;Olexandr Isayev ,&nbsp;Robert W. Call ,&nbsp;Shannon M. McCullough ,&nbsp;Morgan Zemaitis ,&nbsp;Rene Lopez ,&nbsp;James F. Cahoon ,&nbsp;Alexander Tropsha","doi":"10.1016/j.md.2017.04.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Materials informatics is a rapidly emerging data- and knowledge-driven approach for the identification of novel materials<span> for a range of applications, including solar energy conversion. Despite significant experimental effort, the development of highly efficient, stable, and cost-effective photovoltaic materials remains a challenging scientific problem. The quest for precisely defined </span></span>semiconductor properties<span> revolves around an immensely broad landscape of structural parameters. Here, we have resolved this challenge by applying material informatics to design a novel photocathode material for dye-sensitized solar cells (DSSCs). By conducting a virtual screening of 50,000 known inorganic compounds, we have identified lead titanate (PbTiO</span></span><sub>3</sub><span>), a perovskite, as the most promising photocathode material. Notably, lead titanate is significantly different from the traditional base elements or crystal structures used for photocathodes. The fabricated PbTiO</span><sub>3</sub> DSSC devices exhibited the best performance in aqueous solution, showing remarkably high fill factors compared to typical photocathode systems. The results highlight the pivotal role materials informatics can play in streamlining the experimental development of materials with the desired properties.</p></div>","PeriodicalId":100888,"journal":{"name":"Materials Discovery","volume":"6 ","pages":"Pages 9-16"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.md.2017.04.001","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352924517300017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Materials informatics is a rapidly emerging data- and knowledge-driven approach for the identification of novel materials for a range of applications, including solar energy conversion. Despite significant experimental effort, the development of highly efficient, stable, and cost-effective photovoltaic materials remains a challenging scientific problem. The quest for precisely defined semiconductor properties revolves around an immensely broad landscape of structural parameters. Here, we have resolved this challenge by applying material informatics to design a novel photocathode material for dye-sensitized solar cells (DSSCs). By conducting a virtual screening of 50,000 known inorganic compounds, we have identified lead titanate (PbTiO3), a perovskite, as the most promising photocathode material. Notably, lead titanate is significantly different from the traditional base elements or crystal structures used for photocathodes. The fabricated PbTiO3 DSSC devices exhibited the best performance in aqueous solution, showing remarkably high fill factors compared to typical photocathode systems. The results highlight the pivotal role materials informatics can play in streamlining the experimental development of materials with the desired properties.

Abstract Image

钛酸铅作为水性太阳能光电阴极的材料信息学驱动设计和实验验证
材料信息学是一种快速出现的数据和知识驱动的方法,用于识别一系列应用的新型材料,包括太阳能转换。尽管进行了大量的实验工作,但开发高效、稳定和具有成本效益的光伏材料仍然是一个具有挑战性的科学问题。对精确定义的半导体特性的追求围绕着极其广泛的结构参数。在这里,我们通过应用材料信息学来设计一种用于染料敏化太阳能电池(DSSC)的新型光电阴极材料,解决了这一挑战。通过对50000种已知无机化合物进行虚拟筛选,我们确定钛酸铅(PbTiO3)是一种钙钛矿,是最有前途的光电阴极材料。值得注意的是,钛酸铅与用于光电阴极的传统基础元素或晶体结构显著不同。所制备的PbTiO3 DSSC器件在水溶液中表现出最佳性能,与典型的光电阴极系统相比,显示出显著高的填充因子。研究结果强调了材料信息学在简化具有所需性能的材料的实验开发方面可以发挥的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信