Underwater image super-resolution and enhancement via progressive frequency-interleaved network

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Li Wang , Lizhong Xu , Wei Tian , Yunfei Zhang , Hui Feng , Zhe Chen
{"title":"Underwater image super-resolution and enhancement via progressive frequency-interleaved network","authors":"Li Wang ,&nbsp;Lizhong Xu ,&nbsp;Wei Tian ,&nbsp;Yunfei Zhang ,&nbsp;Hui Feng ,&nbsp;Zhe Chen","doi":"10.1016/j.jvcir.2022.103545","DOIUrl":null,"url":null,"abstract":"<div><p><span>Underwater images usually contain severely blurred details, color distortion, and low contrast, warranting efficient methods to obtain clean images. However, most convolutional neural network-based approaches involve high computational cost, numerous model parameters, and even poor performance. Besides, the mapping from input to output is learned using a single path, ignoring the frequency domain information. To solve these challenges, we propose a novel progressive frequency-interleaved network (PFIN) for underwater imagery super-resolution and enhancement. Specifically, progressive frequency-domain module (PFDM) and convolution-guided module (CGM) constitute PFIN for effective color deviation correction and detail enhancement. PFDM that possesses global spatial attention, multi-scale residual, and frequency information modulation blocks gradually learn frequency features and explicitly compensate for detail loss. Furthermore, CGM comprising a series of convolution blocks generates discriminative characteristics to modulate in PFDM for better accommodating degraded representations. Extensive experiments demonstrate the superiority of our PFIN regarding </span>quantitative evaluations and visual quality.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"86 ","pages":"Article 103545"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320322000839","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

Abstract

Underwater images usually contain severely blurred details, color distortion, and low contrast, warranting efficient methods to obtain clean images. However, most convolutional neural network-based approaches involve high computational cost, numerous model parameters, and even poor performance. Besides, the mapping from input to output is learned using a single path, ignoring the frequency domain information. To solve these challenges, we propose a novel progressive frequency-interleaved network (PFIN) for underwater imagery super-resolution and enhancement. Specifically, progressive frequency-domain module (PFDM) and convolution-guided module (CGM) constitute PFIN for effective color deviation correction and detail enhancement. PFDM that possesses global spatial attention, multi-scale residual, and frequency information modulation blocks gradually learn frequency features and explicitly compensate for detail loss. Furthermore, CGM comprising a series of convolution blocks generates discriminative characteristics to modulate in PFDM for better accommodating degraded representations. Extensive experiments demonstrate the superiority of our PFIN regarding quantitative evaluations and visual quality.

基于渐进频率交织网络的水下图像超分辨率增强
水下图像通常包含严重模糊的细节、颜色失真和低对比度,从而保证了获得干净图像的有效方法。然而,大多数基于卷积神经网络的方法涉及高计算成本、大量模型参数,甚至性能较差。此外,从输入到输出的映射是使用单一路径学习的,忽略了频域信息。为了解决这些挑战,我们提出了一种新的用于水下图像超分辨率和增强的渐进频率交织网络(PFIN)。具体而言,渐进频域模块(PFDM)和卷积引导模块(CGM)构成了PFIN,用于有效的颜色偏差校正和细节增强。具有全局空间注意力、多尺度残差和频率信息调制块的PFDM逐渐学习频率特征并明确补偿细节损失。此外,包括一系列卷积块的CGM生成判别特性以在PFDM中进行调制,从而更好地适应降级表示。大量实验证明了PFIN在定量评估和视觉质量方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信