Li Wang , Lizhong Xu , Wei Tian , Yunfei Zhang , Hui Feng , Zhe Chen
{"title":"Underwater image super-resolution and enhancement via progressive frequency-interleaved network","authors":"Li Wang , Lizhong Xu , Wei Tian , Yunfei Zhang , Hui Feng , Zhe Chen","doi":"10.1016/j.jvcir.2022.103545","DOIUrl":null,"url":null,"abstract":"<div><p><span>Underwater images usually contain severely blurred details, color distortion, and low contrast, warranting efficient methods to obtain clean images. However, most convolutional neural network-based approaches involve high computational cost, numerous model parameters, and even poor performance. Besides, the mapping from input to output is learned using a single path, ignoring the frequency domain information. To solve these challenges, we propose a novel progressive frequency-interleaved network (PFIN) for underwater imagery super-resolution and enhancement. Specifically, progressive frequency-domain module (PFDM) and convolution-guided module (CGM) constitute PFIN for effective color deviation correction and detail enhancement. PFDM that possesses global spatial attention, multi-scale residual, and frequency information modulation blocks gradually learn frequency features and explicitly compensate for detail loss. Furthermore, CGM comprising a series of convolution blocks generates discriminative characteristics to modulate in PFDM for better accommodating degraded representations. Extensive experiments demonstrate the superiority of our PFIN regarding </span>quantitative evaluations and visual quality.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"86 ","pages":"Article 103545"},"PeriodicalIF":2.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320322000839","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9
Abstract
Underwater images usually contain severely blurred details, color distortion, and low contrast, warranting efficient methods to obtain clean images. However, most convolutional neural network-based approaches involve high computational cost, numerous model parameters, and even poor performance. Besides, the mapping from input to output is learned using a single path, ignoring the frequency domain information. To solve these challenges, we propose a novel progressive frequency-interleaved network (PFIN) for underwater imagery super-resolution and enhancement. Specifically, progressive frequency-domain module (PFDM) and convolution-guided module (CGM) constitute PFIN for effective color deviation correction and detail enhancement. PFDM that possesses global spatial attention, multi-scale residual, and frequency information modulation blocks gradually learn frequency features and explicitly compensate for detail loss. Furthermore, CGM comprising a series of convolution blocks generates discriminative characteristics to modulate in PFDM for better accommodating degraded representations. Extensive experiments demonstrate the superiority of our PFIN regarding quantitative evaluations and visual quality.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.