Surface roughness, optical properties, and microhardness of additively and subtractively manufactured CAD-CAM materials after brushing and coffee thermal cycling.
Gülce Çakmak, Mustafa Borga Donmez, Marcella Silva de Paula, Canan Akay, Manrique Fonseca, Çiğdem Kahveci, Samir Abou-Ayash, Burak Yilmaz
{"title":"Surface roughness, optical properties, and microhardness of additively and subtractively manufactured CAD-CAM materials after brushing and coffee thermal cycling.","authors":"Gülce Çakmak, Mustafa Borga Donmez, Marcella Silva de Paula, Canan Akay, Manrique Fonseca, Çiğdem Kahveci, Samir Abou-Ayash, Burak Yilmaz","doi":"10.1111/jopr.13796","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the surface roughness, optical properties, and microhardness of additively or subtractively manufactured CAD-CAM materials after simulated brushing and coffee thermal cycling.</p><p><strong>Material and methods: </strong>Two additively manufactured resins (Crowntec, CT and VarseoSmile Crown Plus, VS) and 3 subtractively manufactured materials (a reinforced composite (Brilliant Crios, BC), a polymer-infiltrated ceramic network (Enamic, VE), and a feldspathic ceramic (Mark II, VM)) were used to fabricate disk-shaped specimens (Ø10×1-mm) (n = 10). Surface roughness, Vickers microhardness, and color coordinates were measured after polishing, while surface roughness was also measured before polishing. Specimens were then subjected to 25000 cycles of brushing and 10000 cycles of coffee thermal cycling, and measurements were repeated after each time interval. Color difference (ΔE<sub>00</sub>) and relative translucency parameter (RTP) were calculated. Robust analysis of variance test was used to evaluate surface roughness, ΔE<sub>00</sub>, and RTP data, while generalized linear model analysis was used for microhardness data (α = 0.05).</p><p><strong>Results: </strong>Material type and time interval interaction affected tested parameters (p ≤ 0.002). In addition, material type affected all parameters (p < 0.001) other than surface roughness (p = 0.051), and time interval affected surface roughness and microhardness values (p < 0.001). Tested materials mostly had their highest surface roughness before polishing (p ≤ 0.026); however, there was no clear trend regarding the roughness of materials within different time intervals along with ΔE00 and RTP values within materials or time intervals. VS and CT had the lowest microhardness regardless of the time interval, while the remaining materials were listed as VM, VE, and BC in decreasing order (p < 0.001). Coffee thermal cycling only reduced the microhardness of VM (p < 0.001).</p><p><strong>Conclusions: </strong>Tested additively manufactured resins can be considered more susceptible to simulated brushing and coffee thermal cycling than the other materials, given the fact that their surface roughness and ΔE00 values were higher than previously reported acceptability thresholds and because they had the lowest microhardness after all procedures were complete.</p>","PeriodicalId":49152,"journal":{"name":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","volume":" ","pages":"68-77"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jopr.13796","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the surface roughness, optical properties, and microhardness of additively or subtractively manufactured CAD-CAM materials after simulated brushing and coffee thermal cycling.
Material and methods: Two additively manufactured resins (Crowntec, CT and VarseoSmile Crown Plus, VS) and 3 subtractively manufactured materials (a reinforced composite (Brilliant Crios, BC), a polymer-infiltrated ceramic network (Enamic, VE), and a feldspathic ceramic (Mark II, VM)) were used to fabricate disk-shaped specimens (Ø10×1-mm) (n = 10). Surface roughness, Vickers microhardness, and color coordinates were measured after polishing, while surface roughness was also measured before polishing. Specimens were then subjected to 25000 cycles of brushing and 10000 cycles of coffee thermal cycling, and measurements were repeated after each time interval. Color difference (ΔE00) and relative translucency parameter (RTP) were calculated. Robust analysis of variance test was used to evaluate surface roughness, ΔE00, and RTP data, while generalized linear model analysis was used for microhardness data (α = 0.05).
Results: Material type and time interval interaction affected tested parameters (p ≤ 0.002). In addition, material type affected all parameters (p < 0.001) other than surface roughness (p = 0.051), and time interval affected surface roughness and microhardness values (p < 0.001). Tested materials mostly had their highest surface roughness before polishing (p ≤ 0.026); however, there was no clear trend regarding the roughness of materials within different time intervals along with ΔE00 and RTP values within materials or time intervals. VS and CT had the lowest microhardness regardless of the time interval, while the remaining materials were listed as VM, VE, and BC in decreasing order (p < 0.001). Coffee thermal cycling only reduced the microhardness of VM (p < 0.001).
Conclusions: Tested additively manufactured resins can be considered more susceptible to simulated brushing and coffee thermal cycling than the other materials, given the fact that their surface roughness and ΔE00 values were higher than previously reported acceptability thresholds and because they had the lowest microhardness after all procedures were complete.
期刊介绍:
The Journal of Prosthodontics promotes the advanced study and practice of prosthodontics, implant, esthetic, and reconstructive dentistry. It is the official journal of the American College of Prosthodontists, the American Dental Association-recognized voice of the Specialty of Prosthodontics. The journal publishes evidence-based original scientific articles presenting information that is relevant and useful to prosthodontists. Additionally, it publishes reports of innovative techniques, new instructional methodologies, and instructive clinical reports with an interdisciplinary flair. The journal is particularly focused on promoting the study and use of cutting-edge technology and positioning prosthodontists as the early-adopters of new technology in the dental community.