Eleonora M Aiello, Lori M Laffel, Mary-Elizabeth Patti, Francis J Doyle
{"title":"Ketone-Based Alert System for Insulin Pump Failures.","authors":"Eleonora M Aiello, Lori M Laffel, Mary-Elizabeth Patti, Francis J Doyle","doi":"10.1177/19322968231209339","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>An increasing number of individuals with type 1 diabetes (T1D) manage glycemia with insulin pumps containing short-acting insulin. If insulin delivery is interrupted for even a few hours due to pump or infusion site malfunction, the resulting insulin deficiency can rapidly initiate ketogenesis and diabetic ketoacidosis (DKA).</p><p><strong>Methods: </strong>To detect an event of accidental cessation of insulin delivery, we propose the design of ketone-based alert system (K-AS). This system relies on an extended Kalman filter based on plasma 3-beta-hydroxybutyrate (BOHB) measurements to estimate the disturbance acting on the insulin infusion/injection input. The alert system is based on a novel physiological model capable of simulating the ketone body turnover in response to a change in plasma insulin levels. Simulated plasma BOHB levels were compared with plasma BOHB levels available in the literature. We evaluated the performance of the K-AS on 10 in silico subjects using the S2014 UVA/Padova simulator for two different scenarios.</p><p><strong>Results: </strong>The K-AS achieves an average detection time of 84 and 55.5 minutes in fasting and postprandial conditions, respectively, which compares favorably and improves against a detection time of 193 and 120 minutes, respectively, based on the current guidelines.</p><p><strong>Conclusions: </strong>The K-AS leverages the rapid rate of increase of plasma BOHB to achieve short detection time in order to prevent BOHB levels from rising to dangerous levels, without any false-positive alarms. Moreover, the proposed novel insulin-BOHB model will allow us to understand the efficacy of treatment without compromising patient safety.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"683-691"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968231209339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: An increasing number of individuals with type 1 diabetes (T1D) manage glycemia with insulin pumps containing short-acting insulin. If insulin delivery is interrupted for even a few hours due to pump or infusion site malfunction, the resulting insulin deficiency can rapidly initiate ketogenesis and diabetic ketoacidosis (DKA).
Methods: To detect an event of accidental cessation of insulin delivery, we propose the design of ketone-based alert system (K-AS). This system relies on an extended Kalman filter based on plasma 3-beta-hydroxybutyrate (BOHB) measurements to estimate the disturbance acting on the insulin infusion/injection input. The alert system is based on a novel physiological model capable of simulating the ketone body turnover in response to a change in plasma insulin levels. Simulated plasma BOHB levels were compared with plasma BOHB levels available in the literature. We evaluated the performance of the K-AS on 10 in silico subjects using the S2014 UVA/Padova simulator for two different scenarios.
Results: The K-AS achieves an average detection time of 84 and 55.5 minutes in fasting and postprandial conditions, respectively, which compares favorably and improves against a detection time of 193 and 120 minutes, respectively, based on the current guidelines.
Conclusions: The K-AS leverages the rapid rate of increase of plasma BOHB to achieve short detection time in order to prevent BOHB levels from rising to dangerous levels, without any false-positive alarms. Moreover, the proposed novel insulin-BOHB model will allow us to understand the efficacy of treatment without compromising patient safety.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.