Brinley N. Zabriskie, Nolan Cole, Jacob Baldauf, Craig Decker
{"title":"The impact of correction methods on rare-event meta-analysis","authors":"Brinley N. Zabriskie, Nolan Cole, Jacob Baldauf, Craig Decker","doi":"10.1002/jrsm.1677","DOIUrl":null,"url":null,"abstract":"<p>Meta-analyses have become the gold standard for synthesizing evidence from multiple clinical trials, and they are especially useful when outcomes are rare or adverse since individual trials often lack sufficient power to detect a treatment effect. However, when zero events are observed in one or both treatment arms in a trial, commonly used meta-analysis methods can perform poorly. Continuity corrections (CCs), and numerical adjustments to the data to make computations feasible, have been proposed to ameliorate this issue. While the impact of various CCs on meta-analyses with rare events has been explored, how this impact varies based on the choice of pooling method and heterogeneity variance estimator is not widely understood. We compare several correction methods via a simulation study with a variety of commonly used meta-analysis methods. We consider how these method combinations impact important meta-analysis results, such as the estimated overall treatment effect, 95% confidence interval coverage, and Type I error rate. We also provide a website application of these results to aid researchers in selecting meta-analysis methods for rare-event data sets. Overall, no one-method combination can be consistently recommended, but some general trends are evident. For example, when there is no heterogeneity variance, we find that all pooling methods can perform well when paired with a specific correction method. Additionally, removing studies with zero events can work very well when there is no heterogeneity variance, while excluding single-zero studies results in poorer method performance when there is non-negligible heterogeneity variance and is not recommended.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 1","pages":"130-151"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1677","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-analyses have become the gold standard for synthesizing evidence from multiple clinical trials, and they are especially useful when outcomes are rare or adverse since individual trials often lack sufficient power to detect a treatment effect. However, when zero events are observed in one or both treatment arms in a trial, commonly used meta-analysis methods can perform poorly. Continuity corrections (CCs), and numerical adjustments to the data to make computations feasible, have been proposed to ameliorate this issue. While the impact of various CCs on meta-analyses with rare events has been explored, how this impact varies based on the choice of pooling method and heterogeneity variance estimator is not widely understood. We compare several correction methods via a simulation study with a variety of commonly used meta-analysis methods. We consider how these method combinations impact important meta-analysis results, such as the estimated overall treatment effect, 95% confidence interval coverage, and Type I error rate. We also provide a website application of these results to aid researchers in selecting meta-analysis methods for rare-event data sets. Overall, no one-method combination can be consistently recommended, but some general trends are evident. For example, when there is no heterogeneity variance, we find that all pooling methods can perform well when paired with a specific correction method. Additionally, removing studies with zero events can work very well when there is no heterogeneity variance, while excluding single-zero studies results in poorer method performance when there is non-negligible heterogeneity variance and is not recommended.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.