Identification and estimation of heteroscedastic binary choice models with endogenous dummy regressors

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Beili Mu, Zhengyu Zhang
{"title":"Identification and estimation of heteroscedastic binary choice models with endogenous dummy regressors","authors":"Beili Mu,&nbsp;Zhengyu Zhang","doi":"10.1111/ectj.12109","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the semiparametric identification and estimation of a heteroscedastic binary choice model with endogenous dummy regressors and no parametric restriction on the distribution of the error term. Our approach addresses various drawbacks associated with previous estimators proposed for this model. It allows for: general multiplicative heteroscedasticity in both selection and outcome equations; a nonparametric selection mechanism; and multiple discrete endogenous regressors. The resulting three-stage estimator is shown to be asymptotically normal, with a convergence rate that can be arbitrarily close to if certain smoothness assumptions are satisfied. Simulation results show that our estimator performs reasonably well in finite samples. Our approach is then used to study the intergenerational transmission of smoking habits in British households.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12109","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the semiparametric identification and estimation of a heteroscedastic binary choice model with endogenous dummy regressors and no parametric restriction on the distribution of the error term. Our approach addresses various drawbacks associated with previous estimators proposed for this model. It allows for: general multiplicative heteroscedasticity in both selection and outcome equations; a nonparametric selection mechanism; and multiple discrete endogenous regressors. The resulting three-stage estimator is shown to be asymptotically normal, with a convergence rate that can be arbitrarily close to if certain smoothness assumptions are satisfied. Simulation results show that our estimator performs reasonably well in finite samples. Our approach is then used to study the intergenerational transmission of smoking habits in British households.

内生伪回归异方差二元选择模型的识别与估计
在本文中,我们考虑了具有内生伪回归的异方差二元选择模型的半参数辨识和估计,并且误差项的分布没有参数限制。我们的方法解决了与之前为该模型提出的估计量相关的各种缺点。它允许:选择方程和结果方程中的一般乘性异方差;非参数选择机制;以及多个离散的内生回归。得到的三阶段估计量是渐近正态的,如果满足某些光滑性假设,其收敛速度可以任意接近。仿真结果表明,我们的估计器在有限样本中表现相当好。然后,我们的方法被用于研究英国家庭吸烟习惯的代际传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信